Hemispherics  By  cover art

Hemispherics

By: Hemispherics
  • Summary

  • Hemispherics, el podcast de Fisioterapia y Neurorrehabilitación, presentado por Javier Sánchez Aguilar. En este podcast podrán encontrar: • Reseñas de libros de neurociencia, neurorrehabilitación, fisioterapia. • Comentarios de revisiones y artículos científicos relacionados con la fisioterapia y la neurorrehabilitación. • Visibilización de investigadores/as. • Exposición de temas específicos detallados sobre fisioterapia y neurorrehabilitación. • Entrevistas a fisioterapeutas y especialistas en neurorrehabilitación.
    © 2024 Hemispherics
    Show more Show less
Episodes
  • #69: La fatiga en la esclerosis múltiple
    May 26 2024
    En el episodio de hoy, os traigo un tema muy presente en neurorrehabilitación y en las consultas de neurología en relación con la esclerosis múltiple y es nada menos que la fatiga. La fatiga, ese síntoma tan temido desde siempre, tanto por pacientes como por profesionales de la salud, que es uno de los más reportados, con cifras de prevalencia entre 52 y el 90% de los pacientes (Nagaraj et al., 2013). Indagamos en la fisiopatología de la fatiga para entender mejor este fenómeno, también diferentes formas de ver la fatiga con sus distintas nomenclaturas o términos, vamos a ver cómo se suele evaluar en el entorno clínico y en investigación y finalmente daremos algunas pinceladas de tratamiento neuromodulador. Referencias del episodio: 1. Adibi, I., Sanayei, M., Tabibian, F., Ramezani, N., Pourmohammadi, A., & Azimzadeh, K. (2022). Multiple sclerosis-related fatigue lacks a unified definition: A narrative review. Journal of research in medical sciences : the official journal of Isfahan University of Medical Sciences, 27, 24. https://doi.org/10.4103/jrms.jrms_1401_20 (https://pubmed.ncbi.nlm.nih.gov/35419061/). 2. Ayache, S. S., & Chalah, M. A. (2017). Fatigue in multiple sclerosis - Insights into evaluation and management. Neurophysiologie clinique = Clinical neurophysiology, 47(2), 139–171. https://doi.org/10.1016/j.neucli.2017.02.004 (https://pubmed.ncbi.nlm.nih.gov/28416274/). 3. Ayache, S. S., Serratrice, N., Abi Lahoud, G. N., & Chalah, M. A. (2022). Fatigue in Multiple Sclerosis: A Review of the Exploratory and Therapeutic Potential of Non-Invasive Brain Stimulation. Frontiers in neurology, 13, 813965. https://doi.org/10.3389/fneur.2022.813965 (https://pubmed.ncbi.nlm.nih.gov/35572947/). 4. Bhattarai, J. J., Patel, K. S., Dunn, K. M., Brown, A., Opelt, B., & Hughes, A. J. (2023). Sleep disturbance and fatigue in multiple sclerosis: A systematic review and meta-analysis. Multiple sclerosis journal - experimental, translational and clinical, 9(3), 20552173231194352. https://doi.org/10.1177/20552173231194352 (https://pubmed.ncbi.nlm.nih.gov/37641617/). 5. Braley, T. J., & Chervin, R. D. (2010). Fatigue in multiple sclerosis: mechanisms, evaluation, and treatment. Sleep, 33(8), 1061–1067. https://doi.org/10.1093/sleep/33.8.1061 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910465/). 6. Capone, F., Motolese, F., Falato, E., Rossi, M., & Di Lazzaro, V. (2020). The Potential Role of Neurophysiology in the Management of Multiple Sclerosis-Related Fatigue. Frontiers in neurology, 11, 251. https://doi.org/10.3389/fneur.2020.00251 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212459/). 7. Chalah, M. A., Riachi, N., Ahdab, R., Créange, A., Lefaucheur, J. P., & Ayache, S. S. (2015). Fatigue in Multiple Sclerosis: Neural Correlates and the Role of Non-Invasive Brain Stimulation. Frontiers in cellular neuroscience, 9, 460. https://doi.org/10.3389/fncel.2015.00460 (https://pubmed.ncbi.nlm.nih.gov/26648845/). 8. Chalah, M. A., Kauv, P., Créange, A., Hodel, J., Lefaucheur, J. P., & Ayache, S. S. (2019). Neurophysiological, radiological and neuropsychological evaluation of fatigue in multiple sclerosis. Multiple sclerosis and related disorders, 28, 145–152. https://doi.org/10.1016/j.msard.2018.12.029 (https://pubmed.ncbi.nlm.nih.gov/30594815/). 9. Dittner, A. J., Wessely, S. C., & Brown, R. G. (2004). The assessment of fatigue: a practical guide for clinicians and researchers. Journal of psychosomatic research, 56(2), 157–170. https://doi.org/10.1016/S0022-3999(03)00371-4 (https://pubmed.ncbi.nlm.nih.gov/15016573/). 10. Dobryakova, E., Genova, H. M., DeLuca, J., & Wylie, G. R. (2015). The dopamine imbalance hypothesis of fatigue in multiple sclerosis and other neurological disorders. Frontiers in neurology, 6, 52. https://doi.org/10.3389/fneur.2015.00052 (https://pubmed.ncbi.nlm.nih.gov/25814977/). 11. Freal, J. E., Kraft, G. H., & Coryell, J. K. (1984). Symptomatic fatigue in multiple sclerosis. Archives of physical medicine and rehabilitation, 65(3), 135–138 (https://pubmed.ncbi.nlm.nih.gov/6703889/). 12. Gaede, G., Tiede, M., Lorenz, I., Brandt, A. U., Pfueller, C., Dörr, J., Bellmann-Strobl, J., Piper, S. K., Roth, Y., Zangen, A., Schippling, S., & Paul, F. (2017). Safety and preliminary efficacy of deep transcranial magnetic stimulation in MS-related fatigue. Neurology(R) neuroimmunology & neuroinflammation, 5(1), e423. https://doi.org/10.1212/NXI.0000000000000423 (https://pubmed.ncbi.nlm.nih.gov/29259998/). 13. Garis, G., Haupts, M., Duning, T., & Hildebrandt, H. (2023). Heart rate variability and fatigue in MS: two parallel pathways representing disseminated inflammatory processes?. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 44(1), 83–98. https://doi.org/10.1007/s10072-022-06385-1 (https://pubmed.ncbi.nlm.nih.gov/36125573/). 14. Hanken, K., Eling, P., & Hildebrandt, H. (2014). The ...
    Show more Show less
    1 hr and 12 mins
  • #68: Cerebelo y ataxia. Neurofisiología y terapéutica
    Mar 29 2024
    En este episodio, realizo una síntesis de conocimiento y experiencia sobre el cerebelo y la ataxia, desde la anatomía y fisiología, describiendo la ataxia, hasta la evaluación y el tratamiento neurorrehabilitador. El objetivo es hilar el conocimiento anatómico y neurofisiológico con el aprendizaje motor y la plasticidad del cerebelo y tratar de establecer un marco de evaluación y tratamiento de los pacientes atáxicos. Referencias bibliográficas: 1. Stephan, M. A., et al (2011). Effect of long-term climbing training on cerebellar ataxia: a case series. Rehabilitation research and practice, 2011, 525879. (https://pubmed.ncbi.nlm.nih.gov/22191034/). 2. Aprigliano, F., et al (2019). Effects of repeated waist-pull perturbations on gait stability in subjects with cerebellar ataxia. Journal of neuroengineering and rehabilitation, 16(1), 50. (https://pubmed.ncbi.nlm.nih.gov/30975168/9. 3. Benussi, A.,et al (2017). Long term clinical and neurophysiological effects of cerebellar transcranial direct current stimulation in patients with neurodegenerative ataxia. Brain stimulation, 10(2), 242–250. (https://pubmed.ncbi.nlm.nih.gov/27838276/). 4. Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: nodes in an integrated network. Nature reviews. Neuroscience, 19(6), 338–350. (https://pubmed.ncbi.nlm.nih.gov/29643480/). 5. Cabaraux, P., et al (2023). Consensus Paper: Ataxic Gait. Cerebellum (London, England), 22(3), 394–430. (https://pubmed.ncbi.nlm.nih.gov/35414041/). 6. D'Angelo E. (2014). The organization of plasticity in the cerebellar cortex: from synapses to control. Progress in brain research, 210, 31–58. (https://pubmed.ncbi.nlm.nih.gov/24916288/). 7. D'Angelo E. (2018). Physiology of the cerebellum. Handbook of clinical neurology, 154, 85–108. (https://pubmed.ncbi.nlm.nih.gov/29903454/). 8. França, C., et al (2018). Effects of cerebellar neuromodulation in movement disorders: A systematic review. Brain stimulation, 11(2), 249–260. (https://pubmed.ncbi.nlm.nih.gov/29191439/). 9. Gong, C., et al (2023). Efficacy and safety of noninvasive brain stimulation for patients with cerebellar ataxia: a systematic review and meta-analysis of randomized controlled trials. Journal of neurology, 270(10), 4782–4799. (https://pubmed.ncbi.nlm.nih.gov/37460852/). 10. Gorgas, A. M., et al (2015). Gait changes with balance-based torso-weighting in people with multiple sclerosis. (https://pubmed.ncbi.nlm.nih.gov/24930996/). 11. Ilg, W., et al (2023). Quantitative Gait and Balance Outcomes for Ataxia Trials. Cerebellum 10.1007/s12311-023-01625-2. Advance online publication. (https://pubmed.ncbi.nlm.nih.gov/37955812/). 12. Ilg, W., et al (2009). Intensive coordinative training improves motor performance in degenerative cerebellar disease. Neurology, 73(22), 1823–1830. (https://pubmed.ncbi.nlm.nih.gov/19864636/). 13. Jacobson, G. A. et al (2008). A model of the olivo-cerebellar system as a temporal pattern generator. Trends in neurosciences, 31(12), 617–625. (https://pubmed.ncbi.nlm.nih.gov/18952303/). 14. Kelly, G., & Shanley, J. (2016). Rehabilitation of ataxic gait following cerebellar lesions: Applying theory to practice. Physiotherapy theory and practice, 32(6), 430–437. (https://pubmed.ncbi.nlm.nih.gov/27458875/). 15. Marsden J. F. (2018). Cerebellar ataxia. Handbook of clinical neurology, 159, 261–281. (https://pubmed.ncbi.nlm.nih.gov/30482319/). 16. Morton, S. M., & Bastian, A. J. (2003). Relative contributions of balance and voluntary leg-coordination deficits to cerebellar gait ataxia. Journal of neurophysiology, 89(4), 1844–1856. (https://pubmed.ncbi.nlm.nih.gov/12612041/). 17. Ruggieri, S., et al (2021). A matter of atrophy: differential impact of brain and spine damage on disability worsening in multiple sclerosis. Journal of neurology, 268(12), 4698–4706. (https://pubmed.ncbi.nlm.nih.gov/33942160/). 18. Serrao, M., et al (2017). Use of dynamic movement orthoses to improve gait stability and trunk control in ataxic patients. European journal of physical and rehabilitation medicine, 53(5), 735–743. (https://pubmed.ncbi.nlm.nih.gov/28627859/). 19. Shah, V. V., et al (2021). Gait Variability in Spinocerebellar Ataxia Assessed Using Wearable Inertial Sensors. Movement disorders : official journal of the Movement Disorder Society, 36(12), 2922–2931. (https://pubmed.ncbi.nlm.nih.gov/34424581/). 20. Wang, Y., et al (2023). Effects of transcranial magnetic stimulation on cerebellar ataxia: A systematic review and meta-analysis. Frontiers in neurology, 14, 1049813. (https://pubmed.ncbi.nlm.nih.gov/36779066/). 21. Wright, R. L., et al (2016). Metronome Cueing of Walking Reduces Gait Variability after a Cerebellar Stroke. Frontiers in neurology, 7, 84. (https://pubmed.ncbi.nlm.nih.gov/27313563/).
    Show more Show less
    1 hr and 56 mins
  • #67: El núcleo rojo...¿deja de ser motor?
    Jan 20 2024
    En este episodio, actualizamos la neuroanatomía funcional del núcleo rojo a raíz del último trabajo pre-print de Krimmel (2024): The brainstem’s red nucleus was evolutionarily upgraded to support goal-directed action. Aprovechamos para traer de vuelta la crítica al tracto rubroespinal que hicimos en el #1 de Hemispherics y argumentamos el sentido evolutivo y funcional del núcleo rojo y sus conexiones en el ser humano adulto. ¿Es el núcleo rojo motor? ¿O tiene más función como nodo en una red más amplia de control ejecutivo de la acción? ¡Lo vemos en este episodio! Referencias del episodio: 1. Habas, C., & Cabanis, E. A. (2006). Cortical projections to the human red nucleus: a diffusion tensor tractography study with a 1.5-T MRI machine. Neuroradiology, 48(10), 755–762. https://doi.org/10.1007/s00234-006-0117-9 (https://pubmed.ncbi.nlm.nih.gov/16937147/). 2. Basile, G. A., Quartu, M., Bertino, S., Serra, M. P., Boi, M., Bramanti, A., Anastasi, G. P., Milardi, D., & Cacciola, A. (2021). Red nucleus structure and function: from anatomy to clinical neurosciences. Brain structure & function, 226(1), 69–91. https://doi.org/10.1007/s00429-020-02171-x (https://pubmed.ncbi.nlm.nih.gov/33180142/). 3. Sung, Y. W., Kiyama, S., Choi, U. S., & Ogawa, S. (2022). Involvement of the intrinsic functional network of the red nucleus in complex behavioral processing. Cerebral cortex communications, 3(3), tgac037. https://doi.org/10.1093/texcom/tgac037 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9491841/). 4. Krimmel, S.R., et al. (2024). The brainstem’s red nucleus was evolutionarily upgraded to support goal-directed action. bioRxiv. Preprint. https://doi.org/10.1101/2023.12.30.573730 (https://www.biorxiv.org/content/10.1101/2023.12.30.573730v1). 5. Gordon, E. M., Chauvin, R. J., Van, A. N., Rajesh, A., Nielsen, A., Newbold, D. J., Lynch, C. J., Seider, N. A., Krimmel, S. R., Scheidter, K. M., Monk, J., Miller, R. L., Metoki, A., Montez, D. F., Zheng, A., Elbau, I., Madison, T., Nishino, T., Myers, M. J., Kaplan, S., … Dosenbach, N. U. F. (2023). A somato-cognitive action network alternates with effector regions in motor cortex. Nature, 617(7960), 351–359. https://doi.org/10.1038/s41586-023-05964-2 (https://pubmed.ncbi.nlm.nih.gov/37076628/).
    Show more Show less
    41 mins

What listeners say about Hemispherics

Average customer ratings

Reviews - Please select the tabs below to change the source of reviews.