Episodios

  • Sharon Jones and Dr Rich Scott: Reflecting on 2025 - Collaborating for the future of genomic healthcare
    Dec 31 2025
    In this special end-of-year episode of Behind the Genes, host Sharon Jones is joined by Dr Rich Scott, Chief Executive Officer of Genomics England, to reflect on the past year at Genomics England, and to look ahead to what the future holds. Together, they revisit standout conversations from across the year, exploring how genomics is increasingly embedded in national health strategy, from the NHS 10-Year Health Plan to the government’s ambitions for the UK life sciences sector. Rich reflects on the real-world impact of research, including thousands of diagnoses returned to the NHS, progress in cancer and rare condition research, and the growing momentum of the Generation Study, which is exploring whether whole genome sequencing could be offered routinely at birth. This episode offers a thoughtful reflection on how partnership, innovation, and public trust are shaping the future of genomic healthcare in the UK and why the years ahead promise to be even more exciting. Below are the links to the podcasts mentioned in this episode, in order of appearance: How are families and hospitals bringing the Generation Study to life?How can cross-sector collaborations drive responsible use of AI for genomic innovation?How can we enable ethical and inclusive research to thrive?How can parental insights transform care for rare genetic conditions?How can we unlock the potential of large-scale health datasets?Can patient collaboration shape the future of therapies for rare conditions?https://www.genomicsengland.co.uk/podcasts/what-can-we-learn-from-the-generation-study “There is this view set out there where as many as half of all health interactions by 2035 could be informed by genomics or other similar advanced analytics, and we think that is a really ambitious challenge, but also a really exciting one.” You can download the transcript, or read it below. Sharon: Hello, and welcome to Behind the Genes. Rich: This is about improving health outcomes, but it’s also part of a broader benefit to the country because the UK is recognised already as a great place from a genomics perspective. We think playing our role in that won’t just bring the health benefits, it also will secure the country’s position as the best place in the world to discover, prove, and where proven roll out benefit from genomic innovations and we think it’s so exciting to be part of that team effort. Sharon: I’m Sharon Jones, and today I’ll be joined by Rich Scott, Chief Executive Officer at Genomics England for this end of year special. We’ll be reflecting on some of the conversations from this year’s episodes, and Rich will be sharing his insights and thoughts for the year ahead. If you enjoyed this episode, we’d love your support, so please subscribe, rate, and share on your favourite podcast app. So, let’s get started. Thanks for joining me today, Rich. How are you? Rich: Great, it’s really good to be here. Sharon: It’s been a really exciting year for Genomics England. Can you tell us a bit about what’s going on? Rich: Yeah, it’s been a really busy year, and we’ll dive into a few bits of the components we’ve been working on really hard. One really big theme for us is it’s been really fantastic to see genomics at the heart of the government’s thinking. As we’ll hear later, genomics is at the centre of the new NHS 10-year health plan, and the government’s life sciences sector plan is really ambitious in terms of thinking about how genomics could play a role in routine everyday support of healthcare for many people across the population in the future and it shows a real continued commitment to support the building of the right infrastructure, generating the right evidence to inform that, and to do that in dialogue with the public and patients, and it’s great to see us as a key part of that. It’s also been a really great year as we’ve been getting on with the various programmes that we’ve got, so our continued support of the NHS and our work with researchers accessing the National Genomic Research Library. It’s so wonderful to see the continued stream of diagnoses and actionable findings going back to the NHS. It’s been a really exciting year in terms of research, publications. In cancer, some really exciting publications on, for example, breast cancer and clinical trials. Really good partnership work with some industry partners, really supporting their work. For me, one of the figures we are always really pleased to see go up with time is the number of diagnoses that we can return thanks to research that’s ongoing in the research library, so now we’ve just passed 5,000 diagnostic discoveries having gone back to the NHS, it really helps explain for me how working both with clinical care and with research and linking them really comes to life and why it’s so vital. ...
    Más Menos
    27 m
  • Dr Katie Snape: How can genomics help us understand cancer?
    Dec 17 2025
    In this explainer episode, we’ve asked Dr Katie Snape, principal clinician at Genomics England, cancer geneticist, and specialist in inherited cancer, to explain how genomics can help us understand cancer. You can also find a series of short videos explaining some of the common terms you might encounter about genomics on our YouTube channel. If you’ve got any questions, or have any other topics you’d like us to explain, let us know on podcast@genomicsengland.co.uk. You can download the transcript or read it below. Flo: How can genomics help us understand cancer? I'm Florence Cornish, and today I'm joined with Katie Snape, who is Principal Clinician here at Genomics England, lead Consultant for Cancer Genetics at the Southwest Thames Centre for Genomics, and Chair of UK Cancer Genetics Group. So Katie, it's probably safe to say that everyone listening will have heard the word cancer before. Lots of people may have even been directly affected by it or know someone who has it or who has had it, and I think the term can feel quite scary sometimes and intimidating to understand. So, it might be good if you could explain what we actually mean when we say the word cancer. Katie: Thanks, Florence. So, our bodies are made up of millions of building blocks called cells. Each of these cells contains an instruction manual, and our bodies read this to build a human and keep our bodies working and growing over our lifetimes. So, this human instruction manual is our genetic information, and it's called the human genome. Throughout our lifetime, our cells will continue to divide and grow to make more cells when we need them. And this means that our genetic information has to contain the right instructions, which tell the cells to divide when we need new cells, like making new skin cells, for example as our old skin cells die, but they also need to stop dividing when we have enough new cells and we don't need anymore. And this process of growing but stopping when we don't need anymore cells, keeps our bodies healthy and functioning as they should do. However, if the instructions for making new cells goes wrong and we don't stop making new cells when we're supposed to, then these cells can grow out of control, and they can start spreading and damaging other parts of our body. And this is basically what cancer is. It's an uncontrolled growth of cells which don't stop when they're supposed to, and they grow and spread and damage other tissues in our body. Florence: So, you mentioned there that cancer can arise when the instructions in our cells go wrong. Could you talk a little bit more about this? How does it lead to cancer? Katie: Yeah. So the instructions that control how our cells should grow and then stop growing are usually called cancer genes. So our body reads these instructions a bit like we might read an instruction manual to perform a task. So if we imagine that one of these important cancer genes that has a spelling mistake, which means the body can't read it properly, then those cells won't follow the right instructions to grow and then stop growing like they should. So if our cells lose the ability to read these important instructions due to this type of spelling mistake, then that's when a cancer can develop. As these spelling mistakes happen in cancer genes, we call them genetic alterations or genetic variants. Florence: And so, when you're in the clinic seeing somebody who has cancer, what kinds of genomic tests can they have to help us find out a little bit more about it? Katie: So the genetic alterations that can cause cancer can happen in different cells. So that's why cancer can affect many different parts of the body. If a genetic alteration happens in a breast cell, then a breast cancer might develop. If the alteration happens in a skin cell, then a skin cancer could develop. We can take a sample from the cancer. This is often known as a biopsy, and then we can use this sample to extract the genetic information to read the instructions in the cancer cells, and when we do this, we are looking for spelling mistakes in the important cancer genes, which might of course, those cells to grow out of control. We can also look for patterns of alterations in the cells, which might tell us the processes that led to those genetic alterations occurring. For example, we can look at patterns of damage in the genetic information caused by cigarette smoke, or sunlight, or problems because the cell has lost its ability to mend and repair its genetic information. And we can also count the number of different alterations in the cancer cell, which might tell us how different that cancer cell is from our normal cells, and that can be important because we might be able to use medications to get our immune system to attack the cancer cells. So where we see genetic alterations in a cancer cell, we call them acquired or somatic alterations because we ...
    Más Menos
    9 m
  • Amanda Pichini: What is a genetic counsellor?
    Nov 12 2025
    In this explainer episode, we’ve asked Amanda Pichini, clinical director at Genomics England and genetic counsellor, to explain what a genetic counsellor is. You can also find a series of short videos explaining some of the common terms you might encounter about genomics on our YouTube channel. If you’ve got any questions, or have any other topics you’d like us to explain, let us know on podcast@genomicsengland.co.uk. You can download the transcript or read it below. Florence: What is a genetic counsellor? I'm Florence Cornish, and today I'm joined with Amanda Pichini, a registered genetic counsellor and clinical director for Genomics England, to find out more. So, before we dive in, lots of our listeners have probably already heard the term genetic counsellor before, or some people might have even come across them in their healthcare journeys. But for those who aren't familiar, could you explain what we mean by a genetic counsellor? Amanda: Genetic counsellors are healthcare professionals who have training in clinical genomic medicine and counselling skills. So they help people understand complex information, make informed decisions, and adapt to the impact of genomics on their health and their family. They're expert communicators, patient advocates, and navigators of the ethical issues that genomics and genomic testing could bring. Florence: Could you maybe give me an example of when somebody might see a genetic counsellor? Amanda: Yes, and what's fascinating about genetic counselling is that it's relevant to a huge range of conditions, scenarios, or points in a person's life. Someone's journey might start by going to their GP with a question about their health. Let's say they're concerned about having a strong family history of cancer or heart disease, or perhaps a genetic cause is already known because it's been found in a family member and they want to know if they've inherited that genetic change as well. Or someone might already be being seen in a specialist service, perhaps their child has been diagnosed with a rare condition. A genetic counsellor can help that family explore the wide-ranging impacts of a diagnosis on theirs and their child's life, how it affects their wider family, what it might mean for future children. You might also see a genetic counsellor in private health centres or fertility clinics, or if you're involved in a research study too. Florence: And so, could you explain a bit more about the types of things a genetic counsellor does? What does your day-to-day look like, for example? Amanda: Most genetic counsellors in the UK work in the NHS as part of a team alongside doctors, lab scientists, nurses, midwives, or other healthcare professionals. Their daily tasks include things like analysing a family history, assessing the chance of a person inheriting or passing on a condition, facilitating genetic tests, communicating results, supporting family communication, and managing the psychological, the emotional, the social, and the ethical impacts of genetic risk or results. My day-to-day is different though. I and many other genetic counsellors have taken their skills to other roles that aren't necessarily in a clinic or seeing individual patients. It might involve educating other healthcare professionals or trainees, running their own research, developing policies, working in a lab, or a health tech company, or in the charity sector. For me, as Clinical Director at Genomics England, I bring my clinical expertise and experience working in the NHS to the services and programmes that we run, and that helps to make sure that we design, implement, and evaluate what we do safely, and with the needs of patients, the public, and healthcare professionals at the heart of what we do. My day-to-day involves working with colleagues in tech, design, operations, ethics, communications, and engagement, as well as clinical and scientific experts, to develop and run services like the Generation Study, which is sequencing the genomes of 100,000 newborn babies to see if we can better diagnose and treat children with rare conditions. Florence: So, I would imagine that one of the biggest challenges of being a genetic counsellor is helping patients to kind of make sense of the complicated test results or information, but without overwhelming them. So how do you balance kind of giving people the scientific facts and all the information they need, but while still supporting them emotionally? Amanda: This is really at the core of what genetic counsellors can do best, I think. Getting a diagnosis of a rare condition, or finding out about a risk that has a genetic component, can come with a huge range of emotions, whether that's worry, fear, or hope and relief. It can bring a lot of questions, too. What will this mean for my future or my family's future? What do you know about this condition? What sort of symptoms could I have? What treatments or ...
    Más Menos
    8 m
  • Dr Emily Perry: What is the Genomics England Research Environment?
    Oct 15 2025
    In this explainer episode, we’ve asked Dr Emily Perry, research engagement manager at Genomics England, to explain what the Genomics England Research Environment is. You can also find a series of short videos explaining some of the common terms you might encounter about genomics on our YouTube channel. You can listen to the previous episode mentioned in this podcast, How has a groundbreaking genomic discovery impacted thousands worldwide? If you’ve got any questions, or have any other topics you’d like us to explain, let us know on podcast@genomicsengland.co.uk. You can download the transcript or read it below. Florence: What is the Genomics England Research Environment? My name is Florence Cornish and I'm here with Emily Perry, Research Engagement Manager at Genomics England, to find out more. So Emily, before we dive into the Research Environment, let's set some context. Could you explain what Genomics England is aiming to do as an organisation? Emily: So, Genomics England provides genome sequencing in a healthcare setting for the National Health Service in England. As we sequence genomes for healthcare, the benefit is that we can also put that genomic and clinical data out for research in a controlled manner, and then that can also feed back into healthcare as well. So, it's really, this kind of cyclical process that Genomics England is responsible for. Florence: And so, what do we mean when we say Research Environment? Emily: So, the Research Environment is how our researchers can get access to that clinical and genomic data that we get through healthcare. So, it's a controlled environment, it's completely locked down, so it's kind of like a computer inside a computer. And in there, the researchers can access all of the data that we have and also a lot of tools for working with it in order to do their research. We refer to the data as the National Genomics Research Library, or the NGRL. The NGRL data is provided inside the Research Environment Florence: So you mentioned the National Genomic Research Library. If any listeners want to learn more about this, you can check out our previous Genomics 101 podcast: What is the National Genomic Research Library? And so Emily, could you talk about what kind of data is stored in this library? Emily: So the library is made up of both genomic data and clinical data, which the researchers use alongside each other. The genomic data includes what we call alignments, which is where we match the reads from sequencing onto a reference sequence, and variants, which is where we identify where those alignments differ from the reference sequence, and this is what we are looking for in genomic research. The clinical data includes the data that was taken from our participants at recruitment, so details of the rare disease, the cancer, that they have, but also medical history data. So, we work with the NHS and we're able to get full medical history for our participants as well. This is all fully anonymised, so there's no names, there's no dates of birth, there's no NHS numbers. It's just these identifiers which are used only inside the Research Environment and have no link to the outside world. Florence: And so how is this clinical and genomic data secured? Emily: So, as I said there's no names, there's no NHS numbers, there's no dates of birth. And we have very strict criteria for how people can use the data. So researchers, in order to get access to the Research Environment, they have to be a member of a registered institution, they have to submit a project proposal for what it is that they want to study with the data. There's also restrictions on how they can get the data out, so they do all their research inside, there's no way that they can do things like copy and paste stuff out or move files. The only way that they can get data out of the Research Environment is going through a process called Airlock, which is where they submit the files that they want to export to our committee, who then analyse it, check that it's in accordance with our rules and it protects our participants' safety and that only then would they allow them to export it. Florence: Who has access to the Research Environment? Emily: We have researchers working with the Research Environment all over the world. There's 2 kind of major groups. One of them is academia, so this will be researchers working in universities and academic institutions. The other side of it would is industry - so this will be biotech, startups, pharma companies, things like that. Florence: And finally, can you tell us about some of the discoveries that have been made using this data? Emily: There's lots of really cool things that have come out of the Research Environment. A recent story that came out of the Research Environment was the ReNU syndrome, it was initially just one family that they identified this in, and they were able to extend this discovery across and identify huge numbers of individuals who ...
    Más Menos
    5 m
  • Jenna Cusworth-Bolger, Tracie Miles and Rachel Peck: How are families and hospitals bringing the Generation Study to life?
    Sep 24 2025
    In this episode, we step inside the NHS to explore how the Generation Study is brought to life - from posters in waiting rooms to midwife training. We follow the journey of parents joining the study at the very start of their baby’s life, and hear from those making it happen on the ground. Our guests reflect on the teamwork between families and hospitals, the importance of informed consent, and the powerful insights this study could unlock for the future of care and research. Our host Jenna Cusworth-Bolger, Senior Service Designer at Genomics England, is joined by: Tracie Miles, Associate Director of Nursing and Midwifery at the South West Genomic Medicine Service Alliance, and Co-Investigator for the Generation Study at St Michael’s Hospital in Bristol Rachel Peck, parent participant in the Generation Study and mum to Amber If you enjoyed today’s conversation, please like and share wherever you listen to your podcasts. For more on the Generation Study, explore: Podcast: How has design research shaped the Generation Study Podcast: What can we learn from the Generation Study Podcast: What do parents want to know about the Generation Study Blog: Genomics 101 - What is the Generation Study Generation Study official website “I think from a parent’s point of view I guess that's the hardest thing to consent for, in terms of you having to make a decision on behalf of your unborn child. But I think why we thought that was worthwhile was that could potentially benefit Amber personally herself, or if not, there's a potential it could benefit other children.” You can download the transcript, or read it below. Jenna: Hi, and welcome to Behind the Genes. Rachel: I think if whole genome sequencing can help families get answers earlier, then from a parent perspective I think anything that reduces a long and potentially stressful journey to a diagnosis is really valuable. If a disease is picked up earlier and treatment can start sooner, then that could make a real difference to a child or even Amber’s health and development. Jenna: My name is Jenna Cusworth-Bolger and today I have the great pleasure to be your host. I’m a senior service designer at Genomics England specifically working with the hospitals involved in delivering the Generation Study. In March 2023 we started with our very first hospital, St. Michael’s in Bristol. I am today joined by Tracie Miles who I had the utter pleasure of working closely with when they were setting up. And we also have Rachel Peck, one of the mums who joined the study in Bristol. Regular listeners to this podcast may already be familiar with the Generation Study but for those who are not, the Generation Study is running in England and aims to sequence the genomes of 100,000 newborn babies from a cord blood sample taken at birth. The families consented to take part will have their babies screened for over 200 rare genetic conditions most of which are not normally tested for at birth. We expect only 1% of these babies to receive a condition suspected result, but for those 1,000 families that result could be utterly life changing as it could mean early treatment or support for that condition. Would you like to introduce yourselves and tell us what it means to you to have been that first hospital open in this landmark study. Tracie, I’ll come to you first. Tracie: Hi Jenna, lovely to be with you all this morning. And for those who are listening it is early in the morning, we get up early in the morning because we never know when these babies are going to be born on the Generation Study and we have to be ready for them. So, my name is Tracie, I am the Co-Investigator with the wonderful Andrew Mumford, and we work together with a huge team bringing this study to life in Bristol. I am also the Associate Director of Nursing and Midwifery at the South West Genomic Medicine Service Alliance. Jenna: Thanks Tracie. We’re also joined today by Rachel. Would you like to introduce yourself and your baby, and tell me when you found out about the Generation Study? Rachel: Hi, thank you for inviting me. My name’s Rachel, I’m based in Bristol. My baby is Amber; she was born four months ago in St. Michael’s hospital in Bristol. I first heard about the Generation Study when I was going to one of my antenatal appointments and saw some of the posters in the waiting room. Amber is napping at the moment, so hopefully she’ll stay asleep for long enough for the recording. Jenna: Well done, that's the perfect mum skill to get a baby to nap whilst you’re busy doing something online. So, Rachel, you said you heard about the study from a poster. When you first saw that poster, what were your initial thoughts? Rachel: I thought it was really interesting, I haven’t come across anything like that before and I thought the ability to screen my unborn baby at the time’s whole genome sounded really appealing. Jenna: Fantastic. So, what happened after ...
    Más Menos
    41 m
  • Dr Nour Elkhateeb: What is a clinical geneticist?
    Sep 10 2025
    In this explainer episode, we’ve asked Dr Nour Elkhateeb, clinical fellow at Genomics England and clinical geneticist for the NHS, to explain the role of a clinical geneticist. The previous episode mentioned in the conversation is linked below. What is the diagnostic odyssey? You can also find a series of short videos explaining some of the common terms you might encounter about genomics on our YouTube channel. If you’ve got any questions, or have any other topics you’d like us to explain, let us know on podcast@genomicsengland.co.uk. You can download the transcript or read it below. Florence: What is a clinical geneticist? My name is Florence Cornish and I'm here with Nour Elkhateeb, clinical geneticist for the NHS and fellow at Genomics England, to find out more. So, Nour, before we dive into talking about clinical geneticists, could you explain what we mean by the term genetics? Nour: Hi Florence, so at its heart, genetics is the study of our genes and how they are passed down through families. Think of your genome as a huge, incredibly detailed instruction manual for building and running your body. This manual is written in a specific language, DNA, which is made up of millions of letters arranged in a specific order. And here is the interesting part, we all have tiny differences in our genetic spelling, which is what makes each of us unique. But sometimes a change in the instructions, a spelling mistake in a critical place, can affect health. Genetics is all about learning to read that manual, understand how changes in it can cause disease, how it's passed down through families and finding ways to help. Florence: And so, what kind of thing does a geneticist actually do? Nour: Well, the term geneticist can cover a few different roles, which often work together. Crudely speaking, you can think of two main types, laboratory geneticists and clinical geneticists. Laboratory geneticists are the incredible scientists who work behind the scenes. When we send a blood sample for genomic sequencing, they are the ones who use amazing technology to read the billions of letters in that person's instruction manual. The job is to find the one tiny spelling mistake among those billions of letters that might be causing a health problem. Clinical geneticists like me are medical doctors specialised in the field of genetics, and we work face-to-face with patients and families in a hospital or a clinic setting. You can think of us as the bridge between the incredibly complex science of the genomics lab and the real-life health journey of the person in front of them. We diagnose, manage and provide support for individuals and families who are affected by or at risk of genetic conditions. And we translate that complex genetic information into meaningful information for the patient, the family and the other doctors as well. Florence: So, let's talk a little bit more about clinical geneticists. What stage of someone's genomics journey are they likely to see you? What are some typical reasons they might get referred, for example? Nour: That's a really good question. So, people actually can be seen by clinical geneticists at almost any stage of life, and for many different reasons. Let me give you some examples. We see a lot of babies and children. A family may be referred to us if their baby is born with health problems that do not have a clear cause, or if a child is not developing as expected. And sometimes families may have been searching for answers for years, or what we call a diagnostic odyssey, but no one has been able to find a single unifying diagnosis to explain their challenges. And our job is to see if there is a genetic explanation that can connect all the dots. Florence: You touched there on the diagnostic odyssey, and I know we don't have time to dive into that right now, but if listeners want to learn more about this, then they can check out our previous Genomics 101 podcast: What is the Diagnostic Odyssey? So, Nour, we know that you see children and families in their genomics journeys. Do you see adults as well? Nour: Yes, indeed. We also see many adults who develop certain health conditions, such as cancer or certain types of heart disease, and their clinicians suspect they might be having an underlying inherited genetic cause, or it could be actually someone who is healthy themselves, but have a family history of a particular condition, and want to understand their own risk or the risk for their children and other family members. A classic example is in cancer genetics. A woman with breast cancer at a young age, or who has several family members who have also had it, she would be investigated to see if she carries a gene change that increases the risk of breast cancer and other cancers, and finding that actually would be critical for the treatment choices, and it has huge implications for her relatives. Also, a major part of our work is in the prenatal setting, so we might...
    Más Menos
    10 m
  • Francisco Azuaje, Karim Beguir, Harry Farmer and Dr Rich Scott: How can cross-sector collaborations drive responsible use of AI for genomic innovation?
    Aug 27 2025
    In this episode of Behind the Genes, we explore how Artificial Intelligence (AI) is being applied in genomics through cross-sector collaborations. Genomics England and InstaDeep are working together on AI and machine learning-related projects to accelerate cancer research and drive more personalised healthcare. Alongside these scientific advances, our guests also discuss the ethical, societal and policy challenges associated with the use of AI in genomics, including data privacy and genomic discrimination. Our guests ask what responsible deployment of AI in healthcare should look like and how the UK can lead by example. Our host, Francisco Azuaje, Director of Bioinformatics Genomics England is joined by Dr Rich Scott, Chief Executive Officer at Genomics England Karim Beguir - Chief Executive Officer at InstaDeep Harry Farmer – Senior Researcher at Ada Lovelace Institute If you enjoyed today’s conversation, please like and share wherever you listen to your podcasts. And for more on AI in genomics, tune in to our earlier episode: Can Artificial Intelligence Accelerate the Impact of Genomics? "In terms of what AI’s actually doing and what it’s bringing, it’s really just making possible things that we’ve been trying to do in genomics for some time, making these things easier and cheaper and in some cases viable. So really it’s best to see it as an accelerant for genomic science; it doesn’t present any brand-new ethical problems, instead what it’s doing is taking some fairly old ethical challenges and making these things far more urgent." You can download the transcript, or read it below. Francisco: Welcome to Behind the Genes. [Music plays] Rich: The key is to deliver what we see at the heart of our mission which is bringing the potential of genomic healthcare to everyone. We can only do that by working in partnership. We bring our expertise and those unique capabilities. It’s about finding it in different ways, in different collaborations, that multiplier effect, and it’s really exciting. And I think the phase we’re in at the moment in terms of the use of AI in genomics is we’re still really early in that learning curve. [Music plays] Francisco: My name is Francisco Azuaje, and I am Director of Bioinformatics at Genomics England. On today’s episode I am joined by Karim Beguir, CEO of InstaDeep, a pioneering AI company, Harry Farmer, Senior Researcher at the Ada Lovelace Institute, and Rich Scott, CEO of Genomics England. Today we will explore how Genomics England is collaborating with InstaDeep to harness the power of AI in genomic research. We will also dive into the critical role of ethical considerations in the development and application of AI technologies for healthcare. If you’ve enjoyed today’s episode, please like, share on wherever you listen to your podcasts. [Music plays] Let’s meet our guests. Karim: Hi Francisco, it’s a pleasure to be here. I am the Co-Founder and CEO of InstaDeep and the AI arm of BioNTech Group, and I’m also an AI Researcher. Harry: I’m Harry Farmer, I’m a Senior Researcher at the Ada Lovelace Institute, which is a think-tank that works on the ethical and the societal implications of AI, data and other emerging digital technologies, and it’s a pleasure to be here. Rich: Hi, it’s great to be here with such a great panel. I’m Rich Scott, I’m the CEO of Genomics England. Francisco: Thank you all for joining us. I am excited to explore this intersection of AI and genomics with all of you. To our listeners, if you wish to hear more about AI in genomics, listen to our previous podcast episode, ‘Can Artificial Intelligence Accelerate the Impact of Genomics’, which is linked in this podcast description. Let’s set the stage with what is happening right now, Rich, there have been lots of exciting advances in AI and biomedical research but in genomics it’s far more than just hype, can you walk us through some examples of how AI is actually impacting genomic healthcare research? Rich: Yeah, so, as you say, Francisco, it is a lot more than hype and it’s really exciting. I’d also say that we’re just at the beginning of a real wave of change that’s coming. So while AI is already happening today and driving our thinking, really we’re at the beginning of a process. So when you think about how genomics could impact healthcare and people’s health in general, what we’re thinking about is genomics potentially playing a routine part in up to half of all healthcare encounters, we think, based on the sorts of differences it could make in different parts of our lives and our health journey. There are so many different areas where AI, we expect, will help us on that journey. So thinking about, for example, how we speed up the interpretation of genetic information through to its use and the simple presentation of how to use that in life, in routine healthcare, through to discovery of new ...
    Más Menos
    38 m
  • Dr Harriet Etheredge, Gordon Bedford, Suzalee Blair-Gordon and Suzannah Kinsella: How do people feel about using genomic data to guide health across a lifetime?
    May 13 2025
    In this episode of Behind the Genes, we explore the hopes, concerns and complex questions raised by the idea of a lifetime genome — a single genomic record used across a person’s life to guide healthcare decisions. Drawing on conversations from Genomics England’s Public Standing Group on the lifetime genome, our guests explore what it might mean for individuals, families and society to have their genome stored from birth, and how it could transform healthcare. The discussion reflects on the potential for earlier diagnoses, better treatments and long-term prevention, alongside pressing ethical concerns such as data security, consent, and the impact on family dynamics. Participants share their views and discuss the future role of genomic data in medicine, with insights into how trust, equity and public dialogue must shape this evolving field. Our host for this episode, Dr Harriet Etheredge, is joined by Suzalee Blair-Gordon and Gordon Bedford, two members of the Genomics England’s Public Standing Group on the lifetime genome, and Suzannah Kinsella, Senior Associate at Hopkins Van Mil, a social sciences research agency that helped to facilitate this work. Together, they consider the broader societal implications of lifetime genomic data, and how public involvement can help guide policy and practice in the UK and beyond. This conversation is part of our ongoing work through the Generation Study, exploring how genomics can be used responsibly and meaningfully from birth onwards. You can listen to some of our Generation Study episodes by following the links below. What can we learn from the Generation Study?How has design research shaped the Generation Study?What do parents want to know about the Generation Study? "This isn’t just a science project, it’s about designing a future where everyone feels included and protected. We need more voices, parents, young people, underrepresented communities, to keep shaping it in the right direction." You can download the transcript, or read it below. Harriet: Welcome to Behind the Genes. Suzalee: I have come to terms with the thought that life is unpredictable and I have already begun to accept any health condition that comes my way. Believe you me, I have been through the stage of denial, and yes, I have frozen upon hearing health diagnoses in the past but now I believe that I am a bit wiser to accept the things that I cannot change and to prepare to face the symptoms of whatever illness I am to be dealt with or to be dealt to me. If the analysis of my genome can help me to prepare, then yes, I am going to welcome this programme with open arms. Harriet: My name is Harriet Etheredge, and I am the Ethics Lead on the Newborn Genomes Programme here at Genomic England. On today’s episode I’m joined by 3 really special guests, Suzalee Blair and Gordon Bedford, who are members of Genomics England’s Public Standing Group on Lifetime Genomes, and Suzannah Kinsella, Senior Associate at Hopkins Van Mil, a social sciences research agency that has helped us to facilitate this work. Today we’ll be discussing the concept of the lifetime genome. What do we mean when we say, ‘lifetime genome’? How can we realise the promise of the lifetime genome to benefit people’s healthcare whilst at the same time really appreciating and understanding the very real risks associated? How do we collectively navigate ethical issues emerging at this genomic frontier? If you enjoy today’s episode, we would really love your support. Please share, like and give us a 5-star rating wherever you listen to your podcasts. And if there’s a guest that you’d love to hear on a future episode of Behind the Genes, please contact us on podcast@genomicsengland.co.uk. Let’s get on with the show. I’ll start off by asking our guests to please introduce yourselves. Suzalee, over to you. Suzalee: Thanks, Harriet. So I am a proud mum of two kids, teacher of computing at one of the best academic trusts in the UK, and I am also a sickler, and for those who don’t know what that means, I am living with sickle cell disease. Harriet: Thank you so much, Suzalee. Gordon, over to you. Gordon: I’m Gordon Bedford, I’m a pharmacist based in The Midlands. I’ve worked in hospital and community pharmacy. I have a genetic condition, which I won’t disclose on the podcast but that was my sort of position coming into this as I’m not a parent of children, but it was coming in from my perspective as a pharmacist professional and as a member of society as well. Harriet: Thank you so much, Gordon. And, last but certainly not least, Suzannah. Suzannah: So, yes, Suzannah Kinsella. I am a social researcher at Hopkins Van Mil, and I had the pleasure of facilitating all of the workshops where we gathered together the Public Standing Group and working on reporting the outcome from our discussions, so delighted to be coming in from South London. Harriet: Thank you so much, ...
    Más Menos
    31 m