Rounding Up Podcast Por MLC - Mike Wallus arte de portada

Rounding Up

Rounding Up

De: MLC - Mike Wallus
Escúchala gratis

OFERTA POR TIEMPO LIMITADO. Obtén 3 meses por US$0.99 al mes. Obtén esta oferta.
Welcome to Rounding Up, the professional learning podcast brought to you by The Math Learning Center. Two things have always been true in education: Ongoing professional learning is essential, and teachers are extremely busy people. Rounding Up is a podcast designed to provide meaningful, bite-sized professional learning for busy educators and instructional leaders. I'm Mike Wallus, vice president for educator support at The Math Learning Center and host of the show. In each episode, we'll explore topics important to teachers, instructional leaders, and anyone interested in elementary mathematics education. Topics such as posing purposeful questions, effectively recording student thinking, cultivating students' math identity, and designing asset-based instruction from multilingual learners. Don't miss out! Subscribe now wherever you get your podcasts. Each episode will also be published on the Bridges Educator Site. We hope you'll give Rounding Up a try, and that the ideas we discuss have a positive impact on your teaching and your students' learning.2022 The Math Learning Center | www.mathlearningcenter.org Ciencia Matemáticas
Episodios
  • Season 4 | Episode 4 - Pam Harris, Exploring the Power & Purpose of Number Strings
    Oct 23 2025
    Pam Harris, Exploring the Power & Purpose of Number Strings ROUNDING UP: SEASON 4 | EPISODE 4 I've struggled when I have a new strategy I want my students to consider and despite my best efforts, it just doesn't surface organically. While I didn't want to just tell my students what to do, I wasn't sure how to move forward. Then I discovered number strings. Today, we're talking with Pam Harris about the ways number strings enable teachers to introduce new strategies while maintaining opportunities for students to discover important relationships. BIOGRAPHY Pam Harris, founder and CEO of Math is Figure-out-able™, is a mom, a former high school math teacher, a university lecturer, an author, and a mathematics teacher educator. Pam believes real math is thinking mathematically, not just mimicking what a teacher does. Pam helps leaders and teachers to make the shift that supports students to learn real math. RESOURCES Young Mathematicians at Work by Catherine Fosnot and Maarten Dolk Procedural fluency in mathematics: Reasoning and decision-making, not rote application of procedures position by the National Council of Teachers of Mathematics Bridges number string example from Grade 5, Unit 3, Module 1, Session 1 (BES login required) Developing Mathematical Reasoning: Avoiding the Trap of Algorithms by Pamela Weber Harris and Cameron Harris Math is Figure-out-able!™ Problem Strings TRANSCRIPT Mike Wallus: Welcome to the podcast, Pam. I'm really excited to talk with you today. Pam Harris: Thanks, Mike. I'm super glad to be on. Thanks for having me. Mike: Absolutely. So before we jump in, I want to offer a quick note to listeners. The routine we're going to talk about today goes by several different names in the field. Some folks, including Pam, refer to this routine as “problem strings,” and other folks, including some folks at The Math Learning Center, refer to them as “number strings.” For the sake of consistency, we'll use the term “strings” during our conversation today. And Pam, with that said, I'm wondering if for listeners, without prior knowledge, could you briefly describe strings? How are they designed? How are they intended to work? Pam: Yeah, if I could tell you just a little of my history. When I was a secondary math teacher and I dove into research, I got really curious: How can we do the mental actions that I was seeing my son and other people use that weren't the remote memorizing and mimicking I'd gotten used to? I ran into the work of Cathy Fosnot and Maarten Dolk, and [their book] Young Mathematicians at Work, and they had pulled from the Netherlands strings. They called them “strings.” And they were a series of problems that were in a certain order. The order mattered, the relationship between the problems mattered, and maybe the most important part that I saw was I saw students thinking about the problems and using what they learned and saw and heard from their classmates in one problem, starting to let that impact their work on the next problem. And then they would see that thinking made visible and the conversation between it and then it would impact how they thought about the next problem. And as I saw those students literally learn before my eyes, I was like, “This is unbelievable!” And honestly, at the very beginning, I didn't really even parse out what was different between maybe one of Fosnot's rich tasks versus her strings versus just a conversation with students. I was just so enthralled with the learning because what I was seeing were the kind of mental actions that I was intrigued with. I was seeing them not only happen live but grow live, develop, like they were getting stronger and more sophisticated because of the series of the order the problems were in, because of that sequence of problems. That was unbelievable. And I was so excited about that that I began to dive in and get more clear on: What is a string of problems? The reason I call them “problem strings” is I'm K–12. So I will have data strings and geometry strings and—pick one—trig strings, like strings with functions in algebra. But for the purposes of this podcast, there's strings of problems with numbers in them. Mike: So I have a question, but I think I just want to make an observation first. The way you described that moment where students are taking advantage of the things that they made sense of in one problem and then the next part of the string offers them the opportunity to use that and to see a set of relationships. I vividly remember the first time I watched someone facilitate a string and feeling that same way, of this routine really offers kids an opportunity to take what they've made sense of and immediately apply it. And I think that is something that I cannot say about all the routines that I've seen, but it was really so clear. I just really resonate with that experience of, what will this do for children? Pam: Yeah, and if I can offer an additional ...
    Más Menos
    44 m
  • Season 4 | Episode 3 - Kim Montague—I Have, You Need: The Utility Player of Instructional Routines
    Oct 9 2025
    Kim Montague, I Have, You Need: The Utility Player of Instructional Routines ROUNDING UP: SEASON 4 | EPISODE 3 In sports, a utility player is someone who can play multiple positions competently, providing flexibility and adaptability. From my perspective, the routine I have, you need may just be the utility player of classroom routines. Today we're talking with Kim Montague about I have, you need and the ways it can be used to support everything from fact fluency to an understanding of algebraic properties. BIOGRAPHY Kim Montague is a podcast cohost and content lead at Math is Figure-out-able™. She has also been a teacher for grades 3–5, an instructional coach, a workshop presenter, and a curriculum developer. Kim loves visiting classrooms and believes that when you know your content and know your kids, real learning occurs. RESOURCES Math is Figure-out-able!™ Podcast Math is FigureOutAble!™ Guide (Download) Journey Coaching TRANSCRIPT Mike Wallus: Welcome to the podcast, Kim. I am really excited to talk with you today. So let me do a little bit of grounding. For listeners without prior knowledge, I'm wondering if you could briefly describe the I have, you need routine. How does it work, and how would you describe the roles that the teacher and the student play? Kim Montague: Thanks for having me, Mike. I'm excited to be here. I think it's an important routine. So for those people who have never heard of I have, you need, it is a super simple routine that came from a desire that I had for students to become more fluent with partners of ten, hundred, thousand. And so it simply works as a call-and-response. Often I start with a context, and I might say, “Hey, we're going to pretend that we have 10 of something, and if I have 7 of them, how many would you need so that together we have those 10?” And so it's often prosed as a missing addend. With older students, obviously, I'm going to have some higher numbers, but it's very call-and-response. It's playful. It’s game-like. I'll lob out a question, wait for students to respond. I'm choosing the numbers, so it's a teacher-driven purposeful number sequence, and then students figure out the missing number. I often will introduce a private signal so that kids have enough wait time to think about their answer and then I'll signal everyone to give their response. Mike: OK, so there's a lot to unpack there. I cannot wait to do it. One of the questions I've been asking folks about routines this season is just, at the broadest level, regardless of the numbers that the educator selects, how would you describe what you think I have, you need is good for? What's the routine good for? How can an educator think about its purpose or its value? You mentioned fluency. Maybe say a little bit more about that and if there's anything else that you think it's particularly good for. Kim: So I think one of the things that is really fantastic about I have, you need is that it's really simple. It's a simple-to-introduce, simple-to-facilitate routine, and it's great for so many different grade levels and so many different areas of content. And I think that's true for lots of routines. Teachers don't have time to reintroduce something brand new every single day. So when you find a routine that you can exchange pieces of content, that's really helpful. It's short, and it can be done anywhere. And like I said, it builds fluency, which is a hot topic and something that's important. So I can build fluency with partners of ten, partners of a hundred, partners of thousand, partners of one. I can build complementary numbers for angle measure and fractions. Lots of different areas depending on the grade that you're teaching and what you're trying to focus on. Mike: So one of the things that jumped out for me is the extent to which this can reveal structure. When we're talking about fluency, in some ways that's code for the idea that a lot of our combinations we're having kids think about—the structure of ten or a hundred or a thousand or, in the case of fractions, one whole and its equivalence. Does that make sense? Kim: Yeah, absolutely. So we have a really cool place value system. And I think that we give a lot of opportunities, maybe to place label, but we don't give a lot of opportunities to experience the structure of number. And so there are some very nice structures within partners of ten that then repeat themselves, in a way, within partners of a hundred and partners of a thousand and partners of one, like I mentioned. And if kids really deeply understand the way numbers form and the way they are fitting together, we can make use of those ideas and those experiences within other things like addition, subtraction. So this routine is not simply about, “Can you name a partner number?,” but it's laying foundation in a fun experience that kids then are gaining fluency that is going to be applied to other work that they're doing. Mike: I love that, and I think ...
    Más Menos
    31 m
  • Season 4 | Episode 2 - Dr. Sue Looney - Same but Different: Encouraging Students to Think Flexibly
    Sep 18 2025
    Sue Looney, Same but Different: Encouraging Students to Think Flexibly ROUNDING UP: SEASON 4 | EPISODE 2 Sometimes students struggle in math because they fail to make connections. For too many students, every concept feels like its own entity without any connection to the larger network of mathematical ideas. On the podcast today, we’re talking with Dr. Sue Looney about the powerful same and different routine. We explore the ways that teachers can use this routine to help students identify connections and foster flexible reasoning. BIOGRAPHY Sue Looney holds a doctorate in curriculum and instruction with a specialty in mathematics from Boston University. Sue is particularly interested in our most vulnerable and underrepresented populations and supporting the teachers that, day in and day out, serve these students with compassion, enthusiasm, and kindness. RESOURCES Same but Different Math Looney Math TRANSCRIPT Mike Wallus: Students sometimes struggle in math because they fail to make connections. For too many students, every concept feels like its own entity without any connection to the larger network of mathematical ideas. Today we're talking with Sue Looney about a powerful routine called same but different and the ways teachers can use it to help students identify connections and foster flexible reasoning. Well, hi, Sue. Welcome to the podcast. I'm so excited to be talking with you today. Sue Looney: Hi Mike. Thank you so much. I am thrilled too. I've been really looking forward to this. Mike: Well, for listeners who don't have prior knowledge, I'm wondering if we could start by having you offer a description of the same but different routine. Sue: Absolutely. So the same but different routine is a classroom routine that takes two images or numbers or words and puts them next to each other and asks students to describe how they are the same but different. It's based in a language learning routine but applied to the math classroom. Mike: I think that's a great segue because what I wanted to ask is: At the broadest level—regardless of the numbers or the content or the image or images that educators select—how would you explain what [the] same but different [routine] is good for? Maybe put another way: How should a teacher think about its purpose or its value? Sue: Great question. I think a good analogy is to imagine you're in your ELA— your English language arts—classroom and you were asked to compare and contrast two characters in a novel. So the foundations of the routine really sit there. And what it's good for is to help our brains think categorically and relationally. So, in mathematics in particular, there's a lot of overlap between concepts and we're trying to develop this relational understanding of concepts so that they sort of build and grow on one another. And when we ask ourselves that question—“How are these two things the same but different?”—it helps us put things into categories and understand that sometimes there's overlap, so there's gray space. So it helps us move from black and white thinking into this understanding of grayscale thinking. And if I just zoom out a little bit, if I could, Mike—when we zoom out into that grayscale area, we're developing flexibility of thought, which is so important in all aspects of our lives. We need to be nimble on our feet, we need to be ready for what's coming. And it might not be black or white, it might actually be a little bit of both. So that's the power of the routine and its roots come in exploring executive functioning and language acquisition. And so we just layer that on top of mathematics and it's pure gold. Mike: When we were preparing for this podcast, you shared several really lovely examples of how an educator might use same but different to draw out ideas that involve things like place value, geometry, equivalent fractions, and that's just a few. So I'm wondering if you might share a few examples from different grade levels with our listeners, perhaps at some different grade levels. Sue: Sure. So starting out, we can start with place value. It really sort of pops when we look in that topic area. So when we think about place value, we have a base ten number system, and our numbers are based on this idea that 10 of one makes one group of the next. And so, using same but different, we can help young learners make sense of that system. So, for example, we could look at an image that shows a 10-stick. So maybe that's made out of Unifix cubes. There's one 10-stick a—stick of 10—with three extras next to it and next to that are 13 separate cubes. And then we ask, “How are they the same but different?” And so helping children develop that idea that while I have 1 ten in that collection, I also have 10 ones. Mike: That is so amazing because I will say as a former kindergarten and first grade teacher, that notion of something being a unit of 1 composed of smaller units is such a big deal. And we can ...
    Más Menos
    28 m
Todavía no hay opiniones