
Retrieval, rerankers, and RAG tips and tricks | Data Brew | Episode 39
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
-
Narrado por:
-
De:
Acerca de esta escucha
In this episode, Andrew Drozdov, Research Scientist at Databricks, explores how Retrieval Augmented Generation (RAG) enhances AI models by integrating retrieval capabilities for improved response accuracy and relevance.
Highlights include:
- Addressing LLM limitations by injecting relevant external information.
- Optimizing document chunking, embedding, and query generation for RAG.
- Improving retrieval systems with embeddings and fine-tuning techniques.
- Enhancing search results using re-rankers and retrieval diagnostics.
- Applying RAG strategies in enterprise AI for domain-specific improvements.
adbl_web_global_use_to_activate_webcro805_stickypopup
Todavía no hay opiniones