Retrieval, rerankers, and RAG tips and tricks | Data Brew | Episode 39 Podcast Por  arte de portada

Retrieval, rerankers, and RAG tips and tricks | Data Brew | Episode 39

Retrieval, rerankers, and RAG tips and tricks | Data Brew | Episode 39

Escúchala gratis

Ver detalles del espectáculo

Acerca de esta escucha

In this episode, Andrew Drozdov, Research Scientist at Databricks, explores how Retrieval Augmented Generation (RAG) enhances AI models by integrating retrieval capabilities for improved response accuracy and relevance.

Highlights include:
- Addressing LLM limitations by injecting relevant external information.
- Optimizing document chunking, embedding, and query generation for RAG.
- Improving retrieval systems with embeddings and fine-tuning techniques.
- Enhancing search results using re-rankers and retrieval diagnostics.
- Applying RAG strategies in enterprise AI for domain-specific improvements.

adbl_web_global_use_to_activate_webcro805_stickypopup
Todavía no hay opiniones