E048 Bala Madhusoodhanan on Critical Considerations for Leaders when Adopting AI Solutions Podcast Por  arte de portada

E048 Bala Madhusoodhanan on Critical Considerations for Leaders when Adopting AI Solutions

E048 Bala Madhusoodhanan on Critical Considerations for Leaders when Adopting AI Solutions

Escúchala gratis

Ver detalles del espectáculo

Acerca de esta escucha

Bio Bala has rich experience in retail technology and process transformation. Most recently, he worked as a Principal Architect for Intelligent Automation, Innovation & Supply Chain in a global Fortune 100 retail corporation. Currently he works for a luxury brand as Principal Architect for Intelligent Automation providing technology advice for the responsible use of technology (Low Code, RPA, Chatbots, and AI). He is passionate about technology and spends his free time reading, writing technical blogs and co-chairing a special interest group with The OR Society. Interview Highlights 02:00 Mentors and peers 04:00 Community bus 07:10 Defining AI 08:20 Contextual awareness 11:45 GenAI 14:30 The human loop 17:30 Natural Language Processing 20:45 Sentiment analysis 24:00 Implementing AI solutions 26:30 Ethics and AI 27:30 Biased algorithms 32:00 EU AI Act 33:00 Responsible use of technology Connect Bala Madhusoodhanan on LinkedIn Books and references · https://nymag.com/intelligencer/article/ai-artificial-intelligence-chatbots-emily-m-bender.html - NLP · https://www.theregister.com/2021/05/27/clearview_europe/ - Facial Technology Issue · https://www.designnews.com/electronics-test/apple-card-most-high-profile-case-ai-bias-yet - Apple Card story · https://www.ft.com/content/2d6fc319-2165-42fb-8de1-0edf1d765be3 - Data Centre growth · https://www.technologyreview.com/2024/02/06/1087793/what-babies-can-teach-ai/ · Independent Audit of AI Systems - · Home | The Alan Turing Institute · Competing in the Age of AI: Strategy and Leadership When Algorithms and Networks Run the World, Marco Iansiti & Karim R. Lakhani · AI Superpowers: China, Silicon Valley, and the New World, Kai-Fu Lee · The Algorithmic Leader: How to Be Smart When Machines Are Smarter Than You, Mike Walsh · Human+Machine: Reimagining Work in the Age of AI, Paul R Daugherty, H. James Wilson · Superintelligence: Paths, Dangers, Strategies, Nick Bostrom · The Alignment Problem: How Can Artificial Intelligence Learn Human Values, Brian Christian · Ethical Machines: Your Concise Guide to Totally Unbiased, Transparent, and Respectful AI, Reid Blackman · Wanted: Human-AI Translators: Artificial Intelligence Demystified, Geertrui Mieke De Ketelaere · The Future of Humanity: Terraforming Mars, Interstellar Travel, Immortality, and Our Destiny Beyond, Michio Kaku, Feodor Chin et al Episode Transcript Intro: Hello and welcome to the Agile Innovation Leaders podcast. I’m Ula Ojiaku. On this podcast I speak with world-class leaders and doers about themselves and a variety of topics spanning Agile, Lean Innovation, Business, Leadership and much more – with actionable takeaways for you the listener. Ula Ojiaku So I have with me here, Bala Madhusoodhanan, who is a principal architect with a global luxury brand, and he looks after their RPA and AI transformation. So it's a pleasure to have you on the Agile Innovation Leaders podcast, Bala, thank you for making the time. Bala Madhusoodhanan It's a pleasure to have a conversation with the podcast and the podcast audience, Ula. I follow the podcast and there have been fantastic speakers in the past. So I feel privileged to join you on this conversation. Ula Ojiaku Well, the privilege is mine. So could you start off with telling us about yourself Bala, what have been the key points or the highlights of your life that have led to you being the Bala we know now? Bala Madhusoodhanan It's putting self into uncharted territory. So my background is mechanical engineering, and when I got the job, it was either you go into the mechanical engineering manufacturing side or the software side, which was slightly booming at that point of time, and obviously it was paying more then decided to take the software route, but eventually somewhere the path kind of overlapped. So from a mainframe background, started working on supply chain, and then came back to optimisation, tied back to manufacturing industry. Somewhere there is an overlap, but yeah, that was the first decision that probably got me here. The second decision was to work in a UK geography, rather than a US geography, which is again very strange in a lot of my peers. They generally go to Silicon Valley or East Coast, but I just took a choice to stay here for personal reasons. And then the third was like the mindset. I mean, I had over the last 15, 20 years, I had really good mentors, really good peers, so I always had their help to soundboard my crazy ideas, and I always try to keep a relationship ongoing. Ula Ojiaku What I'm hearing is, based on what you said, lots of relationships have been key to getting you to where you are today, both ...
adbl_web_global_use_to_activate_webcro805_stickypopup
Todavía no hay opiniones