Regular price: $19.95
The laws of thermodynamics drive everything that happens in the universe. From the sudden expansion of a cloud of gas to the cooling of hot metal - everything is moved or restrained by four simple laws. Written by Peter Atkins, one of the world's leading authorities on thermodynamics, this powerful and compact introduction explains what these four laws are and how they work, using accessible language and virtually no mathematics.
Were it not for the calculus, mathematicians would have no way to describe the acceleration of a motorcycle or the effect of gravity on thrown balls and distant planets, or to prove that a man could cross a room and eventually touch the opposite wall. Just how calculus makes these things possible and in doing so finds a correspondence between real numbers and the real world is the subject of this dazzling book by a writer of extraordinary clarity and stylistic brio.
This Very Short Introduction offers a succinct tour of the fascinating world of game theory, a groundbreaking field that analyzes how to play games in a rational way. Ken Binmore, a renowned game theorist, explains the theory in a way that is both entertaining and non-mathematical yet also deeply insightful, revealing how game theory can shed light on everything from social gatherings, to ethical decision-making, to successful card-playing strategies, to calculating the sex ratio among bees.
Logic is often perceived as having little to do with the rest of philosophy, and even less to do with real life. In this lively and accessible introduction, Graham Priest shows how wrong this conception is. He explores the philosophical roots of the subject, explaining how modern formal logic deals with issues ranging from the existence of God and the reality of time to paradoxes of probability and decision theory. Along the way, the basics of formal logic are explained in simple, non-technical terms, showing that logic is a powerful and exciting part of modern philosophy.
Bertrand Russell wrote that mathematics can exalt "as surely as poetry". This is especially true of one equation: ei(pi) + 1 = 0, the brainchild of Leonhard Euler, the Mozart of mathematics. More than two centuries after Euler's death, it is still regarded as a conceptual diamond of unsurpassed beauty. Called Euler's identity, or God's equation, it includes just five numbers but represents an astonishing revelation of hidden connections.
Quantum theory is the most revolutionary discovery in physics since Newton. This book gives a lucid, exciting, and accessible account of the surprising and counterintuitive ideas that shape our understanding of the sub-atomic world. It does not disguise the problems of interpretation that still remain unsettled 75 years after the initial discoveries. The main text makes no use of equations, but there is a Mathematical Appendix for those desiring stronger fare.
The laws of thermodynamics drive everything that happens in the universe. From the sudden expansion of a cloud of gas to the cooling of hot metal - everything is moved or restrained by four simple laws. Written by Peter Atkins, one of the world's leading authorities on thermodynamics, this powerful and compact introduction explains what these four laws are and how they work, using accessible language and virtually no mathematics.
Were it not for the calculus, mathematicians would have no way to describe the acceleration of a motorcycle or the effect of gravity on thrown balls and distant planets, or to prove that a man could cross a room and eventually touch the opposite wall. Just how calculus makes these things possible and in doing so finds a correspondence between real numbers and the real world is the subject of this dazzling book by a writer of extraordinary clarity and stylistic brio.
This Very Short Introduction offers a succinct tour of the fascinating world of game theory, a groundbreaking field that analyzes how to play games in a rational way. Ken Binmore, a renowned game theorist, explains the theory in a way that is both entertaining and non-mathematical yet also deeply insightful, revealing how game theory can shed light on everything from social gatherings, to ethical decision-making, to successful card-playing strategies, to calculating the sex ratio among bees.
Logic is often perceived as having little to do with the rest of philosophy, and even less to do with real life. In this lively and accessible introduction, Graham Priest shows how wrong this conception is. He explores the philosophical roots of the subject, explaining how modern formal logic deals with issues ranging from the existence of God and the reality of time to paradoxes of probability and decision theory. Along the way, the basics of formal logic are explained in simple, non-technical terms, showing that logic is a powerful and exciting part of modern philosophy.
Bertrand Russell wrote that mathematics can exalt "as surely as poetry". This is especially true of one equation: ei(pi) + 1 = 0, the brainchild of Leonhard Euler, the Mozart of mathematics. More than two centuries after Euler's death, it is still regarded as a conceptual diamond of unsurpassed beauty. Called Euler's identity, or God's equation, it includes just five numbers but represents an astonishing revelation of hidden connections.
Quantum theory is the most revolutionary discovery in physics since Newton. This book gives a lucid, exciting, and accessible account of the surprising and counterintuitive ideas that shape our understanding of the sub-atomic world. It does not disguise the problems of interpretation that still remain unsettled 75 years after the initial discoveries. The main text makes no use of equations, but there is a Mathematical Appendix for those desiring stronger fare.
In Particle Physics: A Very Short Introduction , best-selling author Frank Close provides a compelling and lively introduction to the fundamental particles that make up the universe. The book begins with a guide to what matter is made up of and how it evolved, and goes on to describe the fascinating and cutting-edge techniques used to study it.
In 1939, Richard Feynman, a brilliant graduate of MIT, arrived in John Wheeler's Princeton office to report for duty as his teaching assistant. A lifelong friendship and enormously productive collaboration was born, despite sharp differences in personality. The soft-spoken Wheeler, though conservative in appearance, was a raging nonconformist full of wild ideas about the universe. The boisterous Feynman was a cautious physicist who believed only what could be tested. Yet they were complementary spirits.
In Calculating the Cosmos, Ian Stewart presents an exhilarating guide to the cosmos, from our solar system to the entire universe. He describes the architecture of space and time, dark matter and dark energy, how galaxies form, why stars implode, how everything began, and how it's all going to end. He considers parallel universes, the fine-tuning of the cosmos for life, what forms extraterrestrial life might take, and the likelihood of life on Earth being snuffed out by an asteroid.
Claude Shannon was a tinkerer, a playful wunderkind, a groundbreaking polymath, and a digital pioneer whose insights made the Information Age possible. He constructed fire-breathing trumpets and customized unicycles, outfoxed Vegas casinos, and built juggling robots, but he also wrote the seminal text of the Digital Revolution. That work allowed scientists to measure and manipulate information as objectively as any physical object. His work gave mathematicians and engineers the tools to bring that world to pass.
Whether you are a student struggling to fulfill a math or science requirement, or you are embarking on a career change that requires a higher level of math competency, A Mind for Numbers offers the tools you need to get a better grasp of that intimidating but inescapable field. Engineering professor Barbara Oakley knows firsthand how it feels to struggle with math. She flunked her way through high school math and science courses, before enlisting in the army immediately after graduation.
In Love and Math, renowned mathematician Edward Frenkel reveals a side of math we've never seen, suffused with all the beauty and elegance of a work of art. In this heartfelt and passionate audiobook, Frenkel shows that mathematics, far from occupying a specialist niche, goes to the heart of all matter, uniting us across cultures, time, and space. Love and Math tells two intertwined stories: of the wonders of mathematics and of one young man's journey learning and living it.
What is science? Is there a real difference between science and myth? Is science objective? Can science explain everything? This Very Short Introduction provides a concise overview of the main themes of contemporary philosophy of science. Beginning with a short history of science to set the scene, Samir Okasha goes on to investigate the nature of scientific reasoning, scientific explanation, revolutions in science, and theories such as realism and anti-realism.
In this audiobook, machine learning expert Ethem Alpaydin offers a concise overview of the subject for the general listener, describing its evolution, explaining important learning algorithms, and presenting example applications. Alpaydin offers an account of how digital technology advanced from number-crunching mainframes to mobile devices, putting today's machine learning boom in context.
In Significant Figures, acclaimed mathematician Ian Stewart introduces the visionaries of mathematics throughout history. Delving into the lives of twenty-five great mathematicians, Stewart examines the roles they played in creating, inventing, and discovering the mathematics we use today. Through these short biographies, we get acquainted with the history of mathematics.
These 12 half-hour lectures are about what Einstein got wrong. He may have kindled a scientific revolution with his famous theory of relativity and his proof that atoms and light quanta exist, but he balked at accepting the most startling implications of these theories - such as the existence of black holes, the big bang, gravity waves, and mind-bendingly strange phenomena in the quantum realm. This course by research physicist Dan Hooper of the University of Chicago assumes no background in science and uses very little math.
No skill is more important in today's world than being able to think about, understand, and act on information in an effective and responsible way. What's more, at no point in human history have we had access to so much information, with such relative ease, as we do in the 21st century. But because misinformation out there has increased as well, critical thinking is more important than ever. These 24 rewarding lectures equip you with the knowledge and techniques you need to become a savvier, sharper critical thinker in your professional and personal life.
In Beyond Infinity, musician, chef, and mathematician Eugenia Cheng takes listeners on a startling journey from math at its most elemental to its loftiest abstractions. Beginning with the classic thought experiment of Hilbert's hotel - the place where you can (almost) always find a room, if you don't mind being moved from room to room over the course of the night - she explores the wild and woolly world of the infinitely large and the infinitely small.
The aim of this audiobook is to explain, carefully but not technically, the differences between advanced, research-level mathematics, and the sort of mathematics we learn at school. The most fundamental differences are philosophical, and listeners of this audiobook will emerge with a clearer understanding of paradoxical-sounding concepts such as infinity, curved space, and imaginary numbers. The first few chapters are about general aspects of mathematical thought. These are followed by discussions of more specific topics, and the book closes with a chapter answering common sociological questions about the mathematical community (such as "Is it true that mathematicians burn out at the age of 25?").
What did you like best about Mathematics? What did you like least?
Couldn't actually listen to it. The performance was so poor that I had to stop listening. No one actually speaks like that. I thought I was listening to "master thespian" from SNL not a history of mathematics. Ugh.
Would you ever listen to anything by Timothy Gowers again?
Only if someone else narrates.
How could the performance have been better?
YES
4 of 4 people found this review helpful
I love math, but still do not enjoy listening 65 digit numbers read aloud.
The narrator was clear and sometimes story was captivating but many of the things like geometry just do not work well in audio book.
1 of 1 people found this review helpful
What could have made this a 4 or 5-star listening experience for you?
More real world examples from every day life would have created a more realistic connection with the concepts covered in this audio book. Much of the information (for me) would have been easier to understand visually. Reading off long strings of numbers and equations doesn't work as well as seeing them on paper/computer screen.
How did the narrator detract from the book?
His breathy ending to every sentence and, frankly, pretentious tone was incredibly distracting for such a detailed audio book.
9 of 15 people found this review helpful
What disappointed you about Mathematics?
Hearing mathematics makes it difficult to interpret. It has to be seen (at least for me). It is fairly joyless to listen to a long number or equation being read, and it is almost impossible to follow.
I found the readers voice quite irritating too.
How would you have changed the story to make it more enjoyable?
The book itself would have been interesting to read. It needs to be seen though. It simply doesn't work as an audiobook.
Who might you have cast as narrator instead of Craig Jessen?
An English actor perhaps? Timothy Gowers is an English Mathematician. I had assumed it would be an English accent. There's no reason it should be, just my preference in this case. Had it been an American author, I would have preferred an American narrator.
3 of 3 people found this review helpful