Healthcare Informatics and AI: The New Frontier
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
$0.00 por los primeros 30 días
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $9.10
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features:
1. Beginner to Advanced Progression: The book is designed for a wide audience. It starts with the absolute basics of healthcare informatics, requiring no prior medical knowledge, and gradually builds up to advanced topics like deep learning for medical imaging and deploying AI models, making it suitable for both undergraduate and postgraduate students.
2. Hands-On & Practical Approach: Every chapter includes practical examples and "Hands-On Lab" sections with code snippets (primarily in Python) to ensure readers can immediately apply what they have learned.
3. Real-World Case Studies: To bridge the gap between theory and practice, the book is enriched with case studies from the healthcare industry, such as using AI for predicting disease outbreaks, analyzing electronic health records, and personalizing treatment plans.
4. Focus on Industry Standards: Readers will gain practical knowledge of critical healthcare data standards like HL7, DICOM, and the modern FHIR framework, which are essential for building real-world interoperable systems.
5. End-to-End Capstone Project: The final chapter guides the reader step-by-step through the process of building a complete, working "Diabetic Retinopathy Detection System" using Deep Learning, from data preprocessing to model training and deployment via a simple web interface.
6. Simplified Language and Clear Illustrations: Complex technical and medical concepts are explained in the simplest possible terms, supported by clear diagrams, architectures, and flowcharts to aid understanding.
To Whom This Book Is For:
This book is primarily intended for:
1. B.Tech/M.Tech Computer Science Students: It serves as an ideal textbook for courses on Health Informatics, AI in Medicine, Medical Informatics, or as an elective in Data Science and AI specializations.
2. Aspiring Data Scientists and AI/ML Engineers: Professionals and students looking to specialize in the high-growth healthcare technology sector will find this book an invaluable practical guide.
3. Software Developers: Developers aiming to transition into the HealthTech industry can use this book to understand the domain-specific challenges, standards, and application architectures.
4. Healthcare Professionals with a Tech Interest: Doctors, researchers, and hospital administrators who wish to understand the technological transformations happening in their field will find the conceptual explanations clear and insightful.
Todavía no hay opiniones