UL EP 2: Hierarchical Clustering पदानुक्रमित क्लस्टरिंग: डेटा समूहन का वृक्ष-आधारित अन्वेषण Podcast Por  arte de portada

UL EP 2: Hierarchical Clustering पदानुक्रमित क्लस्टरिंग: डेटा समूहन का वृक्ष-आधारित अन्वेषण

UL EP 2: Hierarchical Clustering पदानुक्रमित क्लस्टरिंग: डेटा समूहन का वृक्ष-आधारित अन्वेषण

Escúchala gratis

Ver detalles del espectáculo

Obtén 3 meses por US$0.99 al mes

दिए गए स्रोत पदानुक्रमित क्लस्टरिंग नामक एक डेटा माइनिंग तकनीक की व्याख्या करते हैं, जिसे क्लस्टर एनालिसिस भी कहा जाता है। यह विधि डेटा बिंदुओं को उनके गुणों में समानता के आधार पर समूहित करके एक श्रेणीबद्ध संरचना या वृक्ष-जैसा ढाँचा बनाती है। स्रोत इस तकनीक के दो मुख्य प्रकारों पर प्रकाश डालते हैं: एग्लोमेरेटिव क्लस्टरिंग, जो एक बॉटम-अप दृष्टिकोण है जहाँ व्यक्तिगत डेटा बिंदुओं को धीरे-धीरे बड़े समूहों में विलय किया जाता है, और डिविसिव क्लस्टरिंग, जो एक टॉप-डाउन दृष्टिकोण है जहाँ सभी डेटा बिंदुओं वाले एक एकल समूह को छोटे समूहों में विभाजित किया जाता है। डेंड्रोग्राम नामक एक आरेख का उपयोग इन विलयों या विभाजनों के अनुक्रम को ग्राफिक रूप से प्रदर्शित करने के लिए किया जाता है। विभिन्न लिंकेज मानदंड (जैसे न्यूनतम दूरी, अधिकतम दूरी, या औसत दूरी) यह निर्धारित करने के लिए उपयोग किए जाते हैं कि डेटा बिंदुओं या समूहों के बीच कितनी समानता है, जो क्लस्टरिंग परिणाम को प्रभावित करते हैं। कुल मिलाकर, स्रोत पदानुक्रमित क्लस्टरिंग की कार्यप्रणाली, इसके लाभों और चुनौतियों के साथ-साथ मशीन लर्निंग और विभिन्न वास्तविक दुनिया के अनुप्रयोगों में इसकी प्रासंगिकता को समझाते हैं।

Todavía no hay opiniones