📆 ThursdAI - Jan 8 - NVIDIA's Vera Rubin 5x Leap, XAI's $20B Raise, Ralph Wiggum Takes Over Coding, and GPT Health Arrives Podcast Por  arte de portada

📆 ThursdAI - Jan 8 - NVIDIA's Vera Rubin 5x Leap, XAI's $20B Raise, Ralph Wiggum Takes Over Coding, and GPT Health Arrives

📆 ThursdAI - Jan 8 - NVIDIA's Vera Rubin 5x Leap, XAI's $20B Raise, Ralph Wiggum Takes Over Coding, and GPT Health Arrives

Escúchala gratis

Ver detalles del espectáculo

OFERTA POR TIEMPO LIMITADO | Obtén 3 meses por US$0.99 al mes

$14.95/mes despues- se aplican términos.
Hey folks, Alex here from Weights & Biases, with your weekly AI update (and a first live show of this year!) For the first time, we had a co-host of the show also be a guest on the show, Ryan Carson (from Amp) went supernova viral this week with an X article (1.5M views) about Ralph Wiggum (yeah, from Simpsons) and he broke down that agentic coding technique at the end of the show. LDJ and Nisten helped cover NVIDIA’s incredible announcements during CES with their Vera Rubin upcoming platform (4-5X improvements) and we all got excited about AI medicine with ChatGPT going into Health officially! Plus, a bunch of Open Source news, let’s get into this: ThursdAI - Recaps of the most high signal AI weekly spaces is a reader-supported publication. To receive new posts and support my work, consider becoming a free or paid subscriber.Open Source: The “Small” Models Are WinningWe often talk about the massive frontier models, but this week, Open Source came largely from unexpected places and focused on efficiency, agents, and specific domains.Solar Open 100B: A Data MasterclassUpstage released Solar Open 100B, and it’s a beast. It’s a 102B parameter Mixture-of-Experts (MoE) model, but thanks to MoE magic, it only uses about 12B active parameters during inference. This means it punches incredibly high but runs fast.What I really appreciated here wasn’t just the weights, but the transparency. They released a technical report detailing their “Data Factory” approach. They trained on nearly 20 trillion tokens, with a huge chunk being synthetic. They also used a dynamic curriculum that adjusted the difficulty and the ratio of synthetic data as training progressed. This transparency is what pushes the whole open source community forward.Technically, it hits 88.2 on MMLU and competes with top-tier models, especially in Korean language tasks. You can grab it on Hugging Face.MiroThinker 1.5: The DeepSeek Moment for Agents?We also saw MiroThinker 1.5, a 30B parameter model that is challenging the notion that you need massive scale to be smart. It uses something they call “Interactive Scaling.”Wolfram broke this down for us: this agent forms hypotheses, searches for evidence, and then iteratively revises its answers in a time-sensitive sandbox. It effectively “thinks” before answering. The result? It beats trillion-parameter models on search benchmarks like BrowseComp. It’s significantly cheaper to run, too. This feels like the year where smaller models + clever harnesses (harnesses are the software wrapping the model) will outperform raw scale.Liquid AI LFM 2.5: Running on Toasters (Almost)We love Liquid AI and they are great friends of the show. They announced LFM 2.5 at CES with AMD, and these are tiny ~1B parameter models designed to run on-device. We’re talking about running capable AI on your laptop, your phone, or edge devices (or the Reachy Mini bot that I showed off during the show! I gotta try and run LFM on him!)Probably the coolest part is the audio model. Usually, talking to an AI involves a pipeline: Speech-to-Text (ASR) -> LLM -> Text-to-Speech (TTS). Liquid’s model is end-to-end. It hears audio and speaks audio directly. We watched a demo from Maxime Labonne where the model was doing real-time interaction, interleaving text and audio. It’s incredibly fast and efficient. While it might not write a symphony for you, for on-device tasks like summarization or quick interactions, this is the future.NousCoder-14B and Zhipu AI IPOA quick shoutout to our friends at Nous Research who released NousCoder-14B, an open-source competitive programming model that achieved a 7% jump on LiveCodeBench accuracy in just four days of RL training on 48 NVIDIA B200 GPUs. The model was trained on 24,000 verifiable problems, and the lead researcher Joe Li noted it achieved in 4 days what took him 2 years as a teenager competing in programming contests. The full RL stack is open-sourced on GitHub and Nous published a great WandB results page as well! And in historic news, Zhipu AI (Z.ai)—the folks behind the GLM series—became the world’s first major LLM company to IPO, raising $558 million on the Hong Kong Stock Exchange. Their GLM-4.7 currently ranks #1 among open-source and domestic models on both Artificial Analysis and LM Arena. Congrats to them!Big Companies & APIsNVIDIA CES: Vera Rubin Changes EverythingLDJ brought the heat on this one covering Jensen’s CES keynote that unveiled the Vera Rubin platform, and the numbers are almost hard to believe. We’re talking about a complete redesign of six chips: the Rubin GPU delivering 50 petaFLOPS of AI inference (5x Blackwell), the Vera CPU with 88 custom Olympus ARM cores, NVLink 6, ConnectX-9 SuperNIC, BlueField-4 DPU, and Spectrum-6 Ethernet.Let me put this in perspective using LDJ’s breakdown: if you look at FP8 performance, the jump from Hopper to Blackwell was about 5x. The jump from Blackwell to Vera Rubin is over 3x again—but here’...
Todavía no hay opiniones