Episodios

  • Majorana qubits with Chetan Nayak
    Jan 12 2026
    In this episode of The New Quantum Era, your host Sebastian Hassinger is joined by Chetan Nayak, Technical Fellow at Microsoft, professor of physics at the University of California Santa Barbara, and driving force behind Microsoft's quantum hardware R&D program. They discuss a modality of qubit that has not been covered on the podcast before, based on Majorana fermonic behaviors, which have the promise of providing topological protection against the errors which are such a challenge to quantum computing. Guest Bio Chetan Nayak is a Technical Fellow at Microsoft and leads the company’s topological quantum hardware program, including the Majorana‑1 processor based on Majorana‑zero‑mode qubits. He is also a professor of physics at UCSB and a leading theorist in topological phases of matter, non‑Abelian anyons, and topological quantum computation. Chetan co‑founded Microsoft’s Station Q in 2005, building a bridge from theoretical proposals for topological qubits to engineered semiconductor–superconductor devices. What we talk about Chetan’s first exposure to quantum computing in Peter Shor’s lectures at the Institute for Advanced Study, and how that intersected with his PhD work with Frank Wilczek on non‑Abelian topological phases and Majorana zero modes. The early days of topological quantum computation: fractional quantum Hall states at , emergent quasiparticles, and the realization that braiding these excitations naturally implements Clifford gates. How Alexei Kitaev’s toric‑code and Majorana‑chain ideas connected abstract topology to concrete condensed‑matter systems, and led to Chetan’s collaboration with Michael Freedman and Sankar Das Sarma. The 2005 proposal for a gallium‑arsenide quantum Hall device realizing a topological qubit, and the founding of Station Q to turn such theoretical blueprints into experimental devices in partnership with academic labs. Why Microsoft pivoted from quantum Hall platforms to semiconductor–superconductor nanowires: leveraging the Fu–Kane proximity effect, spin–orbit‑coupled semiconductors, and a huge material design space—while wrestling with the challenges of interfaces and integration. The evolution of the tetron architecture: two parallel topological nanowires with four Majorana zero modes, connected by a trivial superconducting wire and coupled to quantum dots that enable native Z‑ and X‑parity loop measurements. How topological superconductivity allows a superconducting island to host even or odd total electron parity without a local signature, and why that nonlocal encoding provides hardware‑level protection for the qubit’s logical 0 and 1. Microsoft’s roadmap in a 2D “quality vs. complexity” space: improving topological gap, readout signal‑to‑noise, and measurement fidelity while scaling from single tetrons to error‑corrected logical qubits and, ultimately, utility‑scale systems. Error correction on top of topological qubits: using surface codes and Hastings–Haah Floquet codes with native two‑qubit parity measurements, and targeting hundreds of physical tetrons per logical qubit and thousands of logical qubits for applications like Shor’s algorithm and quantum chemistry. Engineering for scale: digital, on–off control of quantum‑dot couplings; cryogenic CMOS to fan out control lines inside the fridge; and why tetron size and microsecond‑scale operations sit in a sweet spot for both physics and classical feedback. Where things stand today: the Majorana‑1 chiplet, recent tetron loop‑measurement experiments, DARPA’s US2QC program, and how external users—starting with government and academic partners—will begin to access these devices before broader Azure Quantum integration. Papers and resources mentionedThese are representative papers and resources that align with topics and allusions in the conversation; they are good entry points if you want to go deeper.Non‑Abelian Anyons and Topological Quantum Computation – S. Das Sarma, M. Freedman, C. Nayak, Rev. Mod. Phys. 80, 1083 (2008); Early device proposalsSankar Das Sarma, Michael Freedman, and Chetan Nayak, “Topological quantum computation,” Physics Today 59(7), 32–38 (July 2006).Roadmap to fault‑tolerant quantum computation using topological qubits – C. Nayak et al., arXiv:2502.12252. Distinct lifetimes for X and Z loop measurements in a Majorana tetron - C. Nayaak et al., arXiv:2507.08795.Majorana qubit codes that also correct odd-weight errors - S. Kundu and B. Reichardt, arXiv:2311.01779. Microsoft's Majorana 1 chip carves new path for quantum computing, Microsoft blog post
    Más Menos
    1 h y 3 m
  • Peaked quantum circuits with Hrant Gharibyan
    Dec 12 2025
    In this episode of The New Quantum Era, Sebastian talks with Hrant Gharibyan, CEO and co‑founder of BlueQubit, about “peaked circuits” and the challenge of verifying quantum advantage. They unpack Scott Aaronson and Yuxuan Zhang’s original peaked‑circuit proposal, BlueQubit’s scalable implementation on real hardware, and a new public challenge that invites the community to attack their construction using the best classical algorithms available. Along the way, they explore how this line of work connects to cryptography, hardness assumptions, and the near‑term role of quantum devices as powerful scientific instruments.Topics CoveredWhy verifying quantum advantage is hard The core problem: if a quantum device claims to solve a task that is classi-cally intractable, how can anyone check that it did the right thing? Random circuit sampling (as in Google’s 2019 “supremacy” experiment and follow‑on work from Google and Quantinuum) is believed to be classically hard to simulate, but the verification metrics (like cross‑entropy benchmarking) are themselves classically intractable at scale.What are peaked circuits? Aaronson and Zhang’s idea: construct circuits that look like random circuits in every respect, but whose output distribution secretly has one special bit string with an anomalously high probability (the “peak”). The designer knows the secret bit string, so a quantum device can be verified by checking that measurement statistics visibly reveal the peak in a modest number of shots, while finding that same peak classically should be as hard as simulating a random circuit.BlueQubit’s scalable construction and hardware demo BlueQubit extended the original 24‑qubit, simulator‑based peaked‑circuit construction to much larger sizes using new classical protocols. Hrant explains their protocol for building peaked circuits on Quantinuum’s H2 processor with around 56 qubits, thousands of gates, and effectively all‑to‑all connectivity, while still hiding a single secret bit string that appears as a clear peak when run on the device.Obfuscation tricks and “quantum steganography” The team uses multiple obfuscation layers (including “swap” and “sweeping” tricks) to transform simple peaked circuits into ones that are statistically indistinguishable from generic random circuits, yet still preserve the hidden peak.The BlueQubit Quantum Advantage Challenge To stress‑test their hardness assumptions, BlueQubit has published concrete circuits and launched a public bounty (currently a quarter of a bitcoin) for anyone who can recover the secret bit string classically. The aim is to catalyze work on better classical simulation and de‑quantization techniques; either someone closes the gap (forcing the protocol to evolve) or the standing bounty helps establish public trust that the task really is classically infeasible.Potential cryptographic angles Although the main focus is verification of quantum advantage, Hrant outlines how the construction has a cryptographic flavor: a secret bit string effectively acts as a key, and only a sufficiently powerful quantum device can efficiently “decrypt” it by revealing the peak. Variants of the protocol could, in principle, yield schemes that are classically secure but only decryptable by quantum hardware, and even quantum‑plus‑key secure, though this remains speculative and secondary to the verification use case. From verification protocol to startup roadmap Hrant positions BlueQubit as an algorithm and capability company: deeply hardware‑aware, but focused on building and analyzing advantage‑style algorithms tailored to specific devices. The peaked‑circuit work is one pillar in a broader effort that includes near‑term scientific applications in condensed‑matter physics and materials (e.g., Fermi–Hubbard models and out‑of‑time‑ordered correlators) where quantum devices can already probe regimes beyond leading classical methods.Scientific advantage today, commercial advantage tomorrow Sebastian and Hrant emphasize that the first durable quantum advantages are likely to appear in scientific computing—acting as exotic lab instruments for physicists, chemists, and materials scientists—well before mass‑market “killer apps” arrive. Once robust, verifiable scientific advantage is established, scaling to larger models and more complex systems becomes a question of engineering, with clear lines of sight to industrial impact in sectors like pharmaceuticals, advanced materials, and manufacturing.The challenge: https://app.bluequbit.io/hackathons/
    Más Menos
    30 m
  • Diamond vacancies and scalable qubits with Quantum Brilliance
    Dec 6 2025

    Episode overview
    This episode of The New Quantum Era features a conversation with Quantum Brilliance co‑founder and CEO Mark Luo and independent board chair Brian Wong about diamond nitrogen vacancy (NV) centers as a platform for both quantum computing and quantum sensing. The discussion covers how NV centers work, what makes diamond‑based qubits attractive at room temperature, and how to turn a lab technology into a scalable product and business.

    What are diamond NV qubits?
    Mark explains how nitrogen vacancy centers in synthetic diamond act as stable room‑temperature qubits, with a nitrogen atom adjacent to a missing carbon atom creating a spin system that can be initialized and read out optically or electronically. The rigidity and thermal properties of diamond remove the need for cryogenics, complex laser setups, and vacuum systems, enabling compact, low‑power quantum devices that can be deployed in standard environments.

    Quantum sensing to quantum computing
    NV centers are already enabling ultra‑sensitive sensing, from nanoscale MRI and quantum microscopy to magnetometry for GPS‑free navigation and neurotech applications using diamond chips under growing brain cells. Mark and Brian frame sensing not as a hedge but as a volume driver that builds the diamond supply chain, pushes costs down, and lays the manufacturing groundwork for future quantum computing chips.

    Fabrication, scalability, and the value chain
    A key theme is the shift from early “shotgun” vacancy placement in diamond to a semiconductor‑style, wafer‑like process with high‑purity material, lithography, characterization, and yield engineering. Brian characterizes Quantum Brilliance’s strategy as “lab to fab”: deciding where to sit in the value chain, leveraging the existing semiconductor ecosystem, and building a partner network rather than owning everything from chips to compilers.

    Devices, roadmaps, and hybrid nodes
    Quantum Brilliance has deployed room‑temperature systems with a handful of physical qubits at Oak Ridge National Laboratory, Fraunhofer IAF, and the Pawsey Supercomputing Centre. Their roadmap targets application‑specific quantum computing with useful qubit counts toward the end of this decade, and lunchbox‑scale, fault‑tolerant systems with on the order of 50–60 logical qubits in the mid‑2030s.

    Modality tradeoffs and business discipline
    Mark positions diamond NV qubits as mid‑range in both speed and coherence time compared with superconducting and trapped‑ion systems, with their differentiator being compute density, energy efficiency, and ease of deployment rather than raw gate speed. Brian brings four decades of experience in semiconductors, batteries, lidar, and optical networking to emphasize milestones, early revenue from sensing, and usability—arguing that making quantum devices easy to integrate and operate is as important as the underlying physics for attracting partners, customers, and investors.

    Partners and ecosystem
    The episode underscores how collaborations with institutions such as Oak Ridge, Fraunhofer, and Pawsey, along with industrial and defense partners, help refine real‑world requirements and ensure the technology solves concrete problems rather than just hitting abstract benchmarks. By co‑designing with end users and complementary hardware and software vendors, Quantum Brilliance aims to “democratize” access to quantum devices, moving them from specialized cryogenic labs to desks, edge systems, and embedded platforms.

    Más Menos
    37 m
  • Macroscopic Quantum Tunneling with Nobel Laureate John Martinis
    Nov 26 2025
    Episode overviewJohn Martinis, Nobel laureate and former head of Google’s quantum hardware effort, joins Sebastian Hassinger on The New Quantum Era to trace the arc of superconducting quantum circuits—from the first demonstrations of macroscopic quantum tunneling in the 1980s to today’s push for wafer-scale, manufacturable qubit processors. The episode weaves together the physics of “synthetic atoms” built from Josephson junctions, the engineering mindset needed to turn them into reliable computers, and what it will take for fabrication to unlock true large-scale quantum systems.Guest bioJohn M. Martinis is a physicist whose experiments on superconducting circuits with John Clarke and Michel Devoret at UC Berkeley established that a macroscopic electrical circuit can exhibit quantum tunneling and discrete energy levels, work recognized by the 2025 Nobel Prize in Physics “for the discovery of macroscopic quantum mechanical tunnelling and energy quantisation in an electric circuit.” He went on to lead the superconducting quantum computing effort at Google, where his team demonstrated large-scale, programmable transmon-based processors, and now heads Qolab (also referred to in the episode as CoLab), a startup focused on advanced fabrication and wafer-scale integration of superconducting qubits.Martinis’s career sits at the intersection of precision instrumentation and systems engineering, drawing on a scientific “family tree” that runs from Cambridge through John Clarke’s group at Berkeley, with strong theoretical influence from Michel Devoret and deep exposure to ion-trap work by Dave Wineland and Chris Monroe at NIST. Today his work emphasizes solving the hardest fabrication and wiring challenges—pursuing high-yield, monolithic, wafer-scale quantum processors that can ultimately host tens of thousands of reproducible qubits on a single 300 mm wafer.Key topicsMacroscopic quantum tunneling on a chip: How Clarke, Devoret, and Martinis used a current-biased Josephson junction to show that a macroscopic circuit variable obeys quantum mechanics, with microwave control revealing discrete energy levels and tunneling between states—laying the groundwork for superconducting qubits. The episode connects this early work directly to the Nobel committee’s citation and to today’s use of Josephson circuits as “synthetic atoms” for quantum computing.From DC devices to microwave qubits: Why early Josephson devices were treated as low-frequency, DC elements, and how failed experiments pushed Martinis and collaborators to re-engineer their setups with careful microwave filtering, impedance control, and dilution refrigerators—turning noisy circuits into clean, quantized systems suitable for qubits. This shift to microwave control and readout becomes the through-line from macroscopic tunneling experiments to modern transmon qubits and multi-qubit gates.Synthetic atoms vs natural atoms: The contrast between macroscopic “synthetic atoms” built from capacitors, inductors, and Josephson junctions and natural atomic systems used in ion-trap and neutral-atom experiments by groups such as Wineland and Monroe at NIST, where single-atom control made the quantum nature more obvious. The conversation highlights how both approaches converged on single-particle control, but with very different technological paths and community cultures.Ten-year learning curve for devices: How roughly a decade of experiments on quantum noise, energy levels, and escape rates in superconducting devices built confidence that these circuits were “clean enough” to support serious qubit experiments, just as early demonstrations such as Yasunobu Nakamura’s single-Cooper-pair box showed clear two-level behavior. This foundational work set the stage for the modern era of superconducting quantum computing across academia and industry.Surface code and systems thinking: Why Martinis immersed himself in the surface code, co-authoring a widely cited tutorial-style paper “Surface codes: Towards practical large-scale quantum computation” (Austin G. Fowler, Matteo Mariantoni, John M. Martinis, Andrew N. Cleland, Phys. Rev. A 86, 032324, 2012; arXiv:1208.0928), to translate error-correction theory into something experimentalists could build. He describes this as a turning point that reframed his work at UC Santa Barbara and Google around full-system design rather than isolated device physics.Fabrication as the new frontier: Martinis argues that the physics of decent transmon-style qubits is now well understood and that the real bottleneck is industrial-grade fabrication and wiring, not inventing ever more qubit variants. His company’s roadmap targets wafer-scale integration—e.g., ~100-qubit test chips scaling toward ~20,000 qubits on a 300 mm wafer—with a focus on yield, junction reproducibility, and integrated escape wiring rather than current approaches that tile many 100-qubit dies into larger systems.From lab ...
    Más Menos
    49 m
  • Trapped ions on the cloud with Thomas Monz from AQT
    Nov 18 2025
    Thomas Monz, CEO of AQT (Alpine Quantum Technologies), joins Sebastian Hassinger on The New Quantum Era to chart the evolution of ion-trap quantum computing — from the earliest breakthroughs in Innsbruck to the latest roll-outs in supercomputing centers and on the cloud. Drawing on a career that spans pioneering research and entrepreneurial grit, Thomas details how AQT is bridging the gap between academic innovation and practical, scalable systems for real-world users. The conversation traverses AQT’s trajectory from component supplier to systems integrator, how standard 19-inch racks and open APIs are making quantum computing accessible in Europe’s top HPC centers, what Thomas anticipates from AQT launching on Amazon Braket, a quantum computing service from AWS, and what it will take for quantum to deliver genuine economic value.Guest Bio Thomas Monz is the CEO and co-founder of AQT. A physicist by training, his work has helped transform trapped-ion quantum computing from a fundamental research topic into a commercially viable technology. After formative stints in quantum networks, high-precision measurement, and hands-on engineering, Thomas launched AQT alongside Peter Zoller and Rainer Blatt to make robust, scalable quantum computers available far beyond the university lab. He continues to be deeply engaged in both hardware development and quantum error correction research, with AQT now deploying systems at EuroHPC centers and bringing devices to Amazon Braket.Key Topics From research prototype to rack-ready: How the pain points converting lab experiments into user-friendly hardware led AQT to build its quantum computers in the same form factors and standards as classical infrastructure, making plug-and-play integration with the supercomputing world possible. Hybrid quantum–HPC deployments: Why systems-level thinking and classic IT lessons (such as respecting 19-inch rack and power standards) have enabled AQT to place ion-trap quantum computers in Germany and Poland as part of the EuroHPC initiative — and why abstraction at the API level is essential for developer adoption. Error correction and code flexibility: How the physical properties of trapped ions let AQT remain agnostic to changing error-correcting codes (from repetition and surface codes to LDPC), enabling swift adaptation to new breakthroughs via software rather than expensive new hardware — and why end-users should never have to think about error correction themselves. Scaling and networking: The challenges moving from one-dimensional to two-dimensional traps, the emerging role of integrated photonics, and AQT’s vision for interconnecting quantum computers within and across HPC sites using telecom-wavelength photons. From local to cloud: What AQT’s move to Amazon Braket means for the range and sophistication of end-user applications, and how broad commercial access is shifting priorities from scientific exploration to real-world performance and customer-driven features. Collaboration as leverage: How AQT’s open approach to integration—letting partners handle job scheduling, APIs, and orchestration—positions it as a technology supplier while benefiting from advances across Europe’s quantum ecosystem.Why It Matters AQT’s journey illustrates how “physics-first” quantum innovation is finally crossing into scalable, reliable real-world systems. By prioritizing integration, user experience, and abstraction, AQT is closing the gap between experimental platforms and actionable quantum advantage. From better error rates and hybrid deployments to global cloud infrastructure, the work Thomas describes signals a maturing industry rapidly moving toward both commercial impact and new scientific discoveries.Episode Highlights How Thomas’s PhD work helped implement the first three-qubit ion-trap gates and formed the foundation for AQT’s technical strategy. The pivotal insight: moving from bespoke lab systems to standardized products allowed quantum hardware to be deployed at scale. The surprisingly smooth physical deployment of AQT machines across Europe, thanks to a “box-on-a-truck” design. Real talk on error correction, the importance of LDPC codes, and the flexibility built into trapped-ion architectures. The future of quantum networking: sending entangled photons between HPC facilities, and the promise of scalable cluster architectures. What cloud access brings to the roadmap, including new end-user requirements and opportunities for innovation in error correction as a service.---- This episode offers an insider’s perspective on the tight coupling of science and engineering required to bring quantum computing out of the lab and into industry. Thomas’s journey is a case study in building both technology and market readiness — critical listening for anyone tracking the real-world ascent of quantum computers. In the spirit of full disclosure, Sebastian is an employee of AWS, ...
    Más Menos
    36 m
  • Quantum Materials and Nano Fabrication with Javad Shabani
    Nov 12 2025
    Quantum Materials and Nano-Fabrication with Javad ShabaniGuest: Dr. Javad Shabani is Professor of Physics at NYU, where he directs both the Center for Quantum Information Physics and the NYU Quantum Institute. He received his PhD from Princeton University in 2011, followed by postdoctoral research at Harvard and UC Santa Barbara in collaboration with Microsoft Research. His research focuses on novel states of matter at superconductor-semiconductor interfaces, mesoscopic physics in low-dimensional systems, and quantum device development. He is an expert in molecular beam epitaxy growth of hybrid quantum materials and has made pioneering contributions to understanding fractional quantum Hall states and topological superconductivity.Episode OverviewProfessor Javad Shabani shares his journey from electrical engineering to the frontiers of quantum materials research, discussing his pioneering work on semiconductor-superconductor hybrid systems, topological qubits, and the development of scalable quantum device fabrication techniques. The conversation explores his current work at NYU, including breakthrough research on germanium-based Josephson junctions and the launch of the NYU Quantum Institute.Key Topics DiscussedEarly Career and Quantum JourneyJavad describes his unconventional path into quantum physics, beginning with a double major in electrical engineering and physics at Sharif University of Technology after discovering John Preskill's open quantum information textbook. His graduate work at Princeton focused on the quantum Hall effect, particularly investigating the enigmatic five-halves fractional quantum Hall state and its potential connection to non-abelian anyons.From Spin Qubits to Topological Quantum ComputingDuring his PhD, Javad worked with Jason Petta and Mansur Shayegan on early spin qubit experiments, experiencing firsthand the challenge of controlling single quantum dots. His postdoctoral work at Harvard with Charlie Marcus focused on scaling from one to two qubits, revealing the immense complexity of nanofabrication and materials science required for quantum control. This experience led him to topological superconductivity at UC Santa Barbara, where he collaborated with Microsoft Research on semiconductor-superconductor heterostructures.Planar Josephson Junctions and Material InnovationAt NYU, Javad's group developed planar two-dimensional Josephson junctions using indium arsenide semiconductors with aluminum superconductors, moving away from one-dimensional nanowires toward more scalable fabrication approaches. In 2018-2019, his team published groundbreaking results in Physical Review Letters showing signatures of topological phase transitions in these hybrid systems.Gatemon Qubits and Hybrid SystemsThe conversation explores Javad's recent work on gatemon qubits—gate-tunable superconducting transmon qubits that leverage semiconductor properties for fast switching in the nanosecond regime. While indium arsenide's piezoelectric properties may limit qubit coherence, the material shows promise as a fast coupler between qubits. This research, published in Physical Review X, represents a convergence of superconducting circuit techniques with semiconductor physics.Breakthrough in Germanium-Based DevicesJavad reveals exciting forthcoming research accepted in Nature Nanotechnology on creating vertical Josephson junctions entirely from germanium. By doping germanium with gallium to make it superconducting, then alternating with undoped semiconducting germanium, his team has achieved wafer-scale fabrication of three-layer superconductor-semiconductor-superconductor junctions. This approach enables placing potentially 20 million junctions on a single wafer, opening pathways toward CMOS-compatible quantum device manufacturing.NYU Quantum Institute and Regional EcosystemThe episode discusses the launch of the NYU Quantum Institute under Javad's leadership, designed to coordinate quantum research across physics, engineering, chemistry, mathematics, and computer science. The Institute aims to connect fundamental research with application-focused partners in finance, insurance, healthcare, and communications throughout New York City. Javad describes NYU's quantum networking project with five nodes across Manhattan and Brooklyn, leveraging NYU's distributed campus fiber infrastructure for short-distance quantum communication.Academic Collaboration and the New York Quantum EcosystemJavad explains how NYU collaborates with Columbia, Princeton, Yale, Cornell, RPI, Stevens Institute, and City College to build a Northeast quantum corridor. The annual New York Quantum Summit (now in its fourth year) brings together academics, government labs including AFRL and Brookhaven, consulting firms, and industry partners. This regional approach complements established hubs like the Chicago Quantum Exchange while addressing New York's unique strengths in finance and dense urban infrastructure.Materials Science ...
    Más Menos
    34 m
  • Incubating quantum innovation with Vijoy Pandey of Outshift by Cisco
    Oct 31 2025
    Vijoy Pandey joins Sebastian Hassinger for this episode of The New Quantum Era to discuss Cisco's ambitious vision for quantum networking—not as a far-future technology, but as infrastructure that solves real problems today. Leading Outshift by Cisco, their incubation group and Cisco Research, Vijoy explains how quantum networks are closer than quantum computers, why distributed quantum computing is the path to scale, and how entanglement-based protocols can tackle immediate classical challenges in security, synchronization, and coordination. The conversation spans from Vijoy's origin story building a Hindi chatbot in the late 1980s to Cisco's groundbreaking room-temperature quantum entanglement chip developed with UC Santa Barbara, and explores use cases from high-frequency trading to telescope array synchronization.Guest BioVijoy Pandey is Senior Vice President at Outshift by Cisco, the company's internal incubation group, where he also leads Cisco Research and Cisco Developer Relations (DevNet). His career in computing began in high school building AI chatbots, eventually leading him through distributed systems and software engineering roles including time at Google. At Cisco, Vijoy oversees a portfolio spanning quantum networking, security, observability, and emerging technologies, operating at the intersection of research and product incubation within the company's Chief Strategy Office.Key TopicsFrom research to systems: How Cisco's quantum work is transitioning from physics research to systems engineering, focusing on operability, deployment, and practical applications rather than building quantum computers.The distributed quantum computing vision: Cisco's North Star is building quantum network fabric that enables scale-out distributed quantum computing across heterogeneous QPU technologies (trapped ion, superconducting, etc.) within data centers and between them—making "the quantum network the solution" to quantum's scaling problem and classical computing's physics problem.Room-temperature entanglement chip: Cisco and UC Santa Barbara developed a prototype photonic chip that generates 200 million entangled photon pairs per second at room temperature, telecom wavelengths, and less than 1 milliwatt power—enabling deployment on existing fiber infrastructure without specialized equipment.Classical use cases today: How quantum networking protocols solve present-day problems in synchronization (global database clocks, telescope arrays), decision coordination (high-frequency trading across geographically distributed exchanges), and security (intrusion detection using entanglement collapse) without requiring massive qubit counts or cryogenic systems.Quantum telepathy for HFT: The concept of using entanglement and teleportation to coordinate decisions across locations faster than the speed of light allows classical communication—enabling fairness guarantees for high-frequency trading across data centers in different cities.Meeting customers where they are: Cisco's strategy to deploy quantum networking capabilities alongside existing classical infrastructure, supporting a spectrum from standard TLS to post-quantum cryptography to QKD, rather than requiring greenfield deployments.The transduction grand challenge: Why building the "NIC card" that connects quantum processors to quantum networks—the transducer—is the critical bottleneck for distributed quantum computing and the key technical risk Cisco is addressing.Product-company fit in corporate innovation: How Outshift operates like internal startups within Cisco, focusing on problems adjacent to the company's four pillars (networking, security, observability, collaboration) with both technology risk and market risk, while maintaining agility through a framework adapted from Cisco's acquisition integration playbook.Why It MattersCisco's systems-level approach to quantum networking represents a paradigm shift from viewing quantum as distant future technology to infrastructure deployable today for specific high-value use cases. By focusing on room-temperature, telecom-compatible entanglement sources and software stacks that integrate with existing networks, Cisco is positioning quantum networking as the bridge between classical and quantum computing worlds—potentially accelerating practical quantum applications from decades away to 5-10 years while solving immediate enterprise challenges in security and coordination.Episode HighlightsVijoy's journey from building Hindi chatbots on a BBC Micro in the late 1980s to leading quantum innovation at Cisco. Why quantum networking is "here and now" while quantum computing is still being figured out. The spectrum of quantum network applications: from near-term classical coordination problems to the long-term quantum internet connecting quantum data centers and sensors. How entanglement enables provable intrusion detection on standard fiber networks alongside classical IP traffic. The "step function...
    Más Menos
    40 m
  • Nobel Laureate John Martinis Discusses Superconducting Qubits and Qolab
    Oct 13 2025

    This episode is a first for the show - a repeat of a previously posted interview on The New Quantum Era podcast! I think you'll agree the reason for the repeat is a great one - this episode, recorded at the APS Global Summit in March, features a conversation John Martinis, co-founder and CTO of QoLab and newly minted Nobel Laureate! Last week the Royal Swedish Academy of Sciences made an announcement that John would share the 2025 Nobel Prize for Physics with John Clarke and Michel Devoret “for the discovery of macroscopic quantum mechanical tunnelling and energy quantisation in an electric circuit.” It should come as no surprise that John and I talked about macroscopic quantum mechanical tunnelling and energy quantization in electrical circuits, since those are precisely the attributes that make a superconducting qubit work for computation.

    The work John is doing at Qolab, a superconducting qubit company seeking to build a million qubit device, is really impressive, as befits a Nobel Laureate and a pioneer in the field. In our conversation we explore the strategic shifts, collaborative efforts, and technological innovations that are pushing the boundaries of quantum computing closer to building scalable, million-qubit systems.

    Key Highlights

    • Emerging from Stealth Mode & Million-Qubit System Paper:
      • Discussion on QoLab’s transition from stealth mode and their comprehensive paper on building scalable million-qubit systems.
      • Focus on a systematic approach covering the entire stack.
    • Collaboration with Semiconductor Companies:
      • Unique business model emphasizing collaboration with semiconductor companies to leverage external expertise.
      • Comparison with bigger players like Google, who can fund the entire stack internally.
    • Innovative Technological Approaches:
      • Integration of wafer-scale technology and advanced semiconductor manufacturing processes.
      • Emphasis on adjustable qubits and adjustable couplers for optimizing control and scalability.
    • Scaling Challenges and Solutions:
      • Strategies for achieving scale, including using large dilution refrigerators and exploring optical communication for modular design.
      • Plans to address error correction and wiring challenges using brute force scaling and advanced materials.
    • Future Vision and Speeding Up Development:
      • QoLab’s goal to significantly accelerate the timeline toward achieving a million-qubit system.
      • Insight into collaborations with HP Enterprises, NVIDIA, Quantum Machines, and others to combine expertise in hardware and software.
    • Research Papers Mentioned in this Episode:
      • Position paper on building scalable million-qubit systems
    Más Menos
    37 m
adbl_web_global_use_to_activate_DT_webcro_1694_expandible_banner_T1