• Ten Billion Times Faster: Real-Time Tsunami Forecasting with Digital Twins

  • Apr 27 2025
  • Duración: 14 m
  • Podcast

Ten Billion Times Faster: Real-Time Tsunami Forecasting with Digital Twins

  • Resumen

  • In this episode of podcast_v0.1, we break down the groundbreaking paper "Real-time Bayesian inference at extreme scale: A digital twin for tsunami early warning applied to the Cascadia subduction zone." Imagine shrinking a 50-year supercomputer job into 0.2 seconds of computation on a regular GPU—that’s exactly what these researchers achieved. We explore how they used offline/online decomposition, extreme-scale simulations, and Bayesian inference to create a real-time tsunami forecasting system capable of saving lives. You'll learn about the clever use of shift invariance, the role of uncertainty quantification, and how computational design—not just brute force—can redefine what's possible. This is a must-listen if you're interested in high-performance computing, real-world digital twins, or how engineering innovation solves critical, time-sensitive problems.

    Read the original paper: http://arxiv.org/abs/2504.16344v1

    Music: 'The Insider - A Difficult Subject'

    Más Menos
adbl_web_global_use_to_activate_webcro768_stickypopup

Lo que los oyentes dicen sobre Ten Billion Times Faster: Real-Time Tsunami Forecasting with Digital Twins

Calificaciones medias de los clientes

Reseñas - Selecciona las pestañas a continuación para cambiar el origen de las reseñas.