Talk Python To Me Podcast Por Michael Kennedy arte de portada

Talk Python To Me

Talk Python To Me

De: Michael Kennedy
Escúchala gratis

Talk Python to Me is a weekly podcast hosted by developer and entrepreneur Michael Kennedy. We dive deep into the popular packages and software developers, data scientists, and incredible hobbyists doing amazing things with Python. If you're new to Python, you'll quickly learn the ins and outs of the community by hearing from the leaders. And if you've been Pythoning for years, you'll learn about your favorite packages and the hot new ones coming out of open source.Copyright 2015-2025
Episodios
  • #517: Agentic Al Programming with Python
    Aug 22 2025
    Agentic AI programming is what happens when coding assistants stop acting like autocomplete and start collaborating on real work. In this episode, we cut through the hype and incentives to define “agentic,” then get hands-on with how tools like Cursor, Claude Code, and LangChain actually behave inside an established codebase. Our guest, Matt Makai, now VP of Developer Relations at DigitalOcean, creator of Full Stack Python and Plushcap, shares hard-won tactics. We unpack what breaks, from brittle “generate a bunch of tests” requests to agents amplifying technical debt and uneven design patterns. Plus, we also discuss a sane git workflow for AI-sized diffs. You’ll hear practical Claude tips, why developers write more bugs when typing less, and where open source agents are headed. Hint: The destination is humans as editors of systems, not just typists of code. Episode sponsors Posit Talk Python Courses Links from the show Matt Makai: linkedin.com Plushcap Developer Content Analytics: plushcap.com DigitalOcean Gradient AI Platform: digitalocean.com DigitalOcean YouTube Channel: youtube.com Why Generative AI Coding Tools and Agents Do Not Work for Me: blog.miguelgrinberg.com AI Changes Everything: lucumr.pocoo.org Claude Code - 47 Pro Tips in 9 Minutes: youtube.com Cursor AI Code Editor: cursor.com JetBrains Junie: jetbrains.com Claude Code by Anthropic: anthropic.com Full Stack Python: fullstackpython.com Watch this episode on YouTube: youtube.com Episode #517 deep-dive: talkpython.fm/517 Episode transcripts: talkpython.fm Developer Rap Theme Song: Served in a Flask: talkpython.fm/flasksong --- Stay in touch with us --- Subscribe to Talk Python on YouTube: youtube.com Talk Python on Bluesky: @talkpython.fm at bsky.app Talk Python on Mastodon: talkpython Michael on Bluesky: @mkennedy.codes at bsky.app Michael on Mastodon: mkennedy
    Más Menos
    1 h y 17 m
  • #516: Accelerating Python Data Science at NVIDIA
    Aug 19 2025
    Python’s data stack is getting a serious GPU turbo boost. In this episode, Ben Zaitlen from NVIDIA joins us to unpack RAPIDS, the open source toolkit that lets pandas, scikit-learn, Spark, Polars, and even NetworkX execute on GPUs. We trace the project’s origin and why NVIDIA built it in the open, then dig into the pieces that matter in practice: cuDF for DataFrames, cuML for ML, cuGraph for graphs, cuXfilter for dashboards, and friends like cuSpatial and cuSignal. We talk real speedups, how the pandas accelerator works without a rewrite, and what becomes possible when jobs that used to take hours finish in minutes. You’ll hear strategies for datasets bigger than GPU memory, scaling out with Dask or Ray, Spark acceleration, and the growing role of vector search with cuVS for AI workloads. If you know the CPU tools, this is your on-ramp to the same APIs at GPU speed.

    Episode sponsors

    Posit
    Talk Python Courses

    Links from the show RAPIDS: github.com/rapidsai
    Example notebooks showing drop-in accelerators: github.com
    Benjamin Zaitlen - LinkedIn: linkedin.com
    RAPIDS Deployment Guide (Stable): docs.rapids.ai
    RAPIDS cuDF API Docs (Stable): docs.rapids.ai
    Asianometry YouTube Video: youtube.com
    cuDF pandas Accelerator (Stable): docs.rapids.ai
    Watch this episode on YouTube: youtube.com
    Episode #516 deep-dive: talkpython.fm/516
    Episode transcripts: talkpython.fm
    Developer Rap Theme Song: Served in a Flask: talkpython.fm/flasksong

    --- Stay in touch with us ---
    Subscribe to Talk Python on YouTube: youtube.com
    Talk Python on Bluesky: @talkpython.fm at bsky.app
    Talk Python on Mastodon: talkpython
    Michael on Bluesky: @mkennedy.codes at bsky.app
    Michael on Mastodon: mkennedy
    Más Menos
    1 h y 6 m
  • #515: Durable Python Execution with Temporal
    Aug 11 2025
    What if your code was crash-proof? That's the value prop for a framework called Temporal. Temporal is a durable execution platform that enables developers to build scalable applications without sacrificing productivity or reliability. The Temporal server executes units of application logic called Workflows in a resilient manner that automatically handles intermittent failures, and retries failed operations. We have Mason Egger from Temporal on to dive into durable execution. Episode sponsors Posit PyBay Talk Python Courses Links from the show Just Enough Python for Data Scientists Course: talkpython.fm Temporal Durable Execution Platform: temporal.io Temporal Learn Portal: learn.temporal.io Temporal GitHub Repository: github.com Temporal Python SDK GitHub Repository: github.com What Is Durable Execution, Temporal Blog: temporal.io Mason on Bluesky Profile: bsky.app Mason on Mastodon Profile: fosstodon.org Mason on Twitter Profile: twitter.com Mason on LinkedIn Profile: linkedin.com X Post by @skirano: x.com Temporal Docker Compose GitHub Repository: github.com Building a distributed asyncio event loop (Chad Retz) - PyTexas 2025: youtube.com Watch this episode on YouTube: youtube.com Episode #515 deep-dive: talkpython.fm/515 Episode transcripts: talkpython.fm Developer Rap Theme Song: Served in a Flask: talkpython.fm/flasksong --- Stay in touch with us --- Subscribe to Talk Python on YouTube: youtube.com Talk Python on Bluesky: @talkpython.fm at bsky.app Talk Python on Mastodon: talkpython Michael on Bluesky: @mkennedy.codes at bsky.app Michael on Mastodon: mkennedy
    Más Menos
    1 h y 11 m
Todavía no hay opiniones