Sub-second volumetric 3D printing by synthesis of holographic light f ields
No se pudo agregar al carrito
Add to Cart failed.
Error al Agregar a Lista de Deseos.
Error al eliminar de la lista de deseos.
Error al añadir a tu biblioteca
Error al seguir el podcast
Error al dejar de seguir el podcast
-
Narrado por:
-
De:
The provided source describes DISH (Digital Incoherent Synthesis of Holographic Light Fields), a novel 3D printing technology designed to overcome the trade-off between high-speed mass production and microscopic precision. Traditional volumetric methods often struggle with mechanical vibrations and light diffraction, but DISH utilizes a coarse-to-fine holographic optimization algorithm and a single-side illumination system to achieve rapid, high-resolution fabrication of millimetre-scale objects. By integrating these optical advancements with a fluidic control system, the researchers demonstrate the ability to print complex, unsupported structures in a continuous flow across various materials, including biocompatible hydrogels and elastic resins. Ultimately, this framework aims to bridge the gap between laboratory-scale prototyping and industrial manufacturing for applications in tissue engineering, photonics, and drug screening.