Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models Podcast Por  arte de portada

Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models

Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models

Escúchala gratis

Ver detalles del espectáculo
OFERTA POR TIEMPO LIMITADO. Obtén 3 meses por US$0.99 al mes. Obtén esta oferta.
In this episode, we discuss Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models by Peter Robicheaux, Matvei Popov, Anish Madan, Isaac Robinson, Joseph Nelson, Deva Ramanan, Neehar Peri. The paper introduces Roboflow100-VL, a large benchmark of 100 diverse multi-modal object detection datasets designed to test vision-language models (VLMs) on out-of-distribution concepts beyond typical pre-training data. It demonstrates that state-of-the-art VLMs perform poorly in zero-shot settings on challenging domains like medical imaging, highlighting the importance of few-shot concept alignment through annotated examples and rich text. The paper also presents results from a CVPR 2025 competition where the winning approach significantly outperforms baselines in few-shot detection tasks.
Todavía no hay opiniones