ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models Podcast Por  arte de portada

ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models

ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models

Escúchala gratis

Ver detalles del espectáculo
OFERTA POR TIEMPO LIMITADO. Obtén 3 meses por US$0.99 al mes. Obtén esta oferta.
In this episode, we discuss ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models by Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, Yi Dong. This paper introduces ProRL, a new reinforcement learning training method that uncovers novel reasoning strategies beyond those found in base language models. Empirical results show that models trained with ProRL consistently outperform base models on challenging reasoning tasks, including cases where base models fail even with extensive attempts. The study demonstrates that prolonged RL can meaningfully expand reasoning capabilities by exploring new solution spaces over time, advancing understanding of how RL enhances language model reasoning.
Todavía no hay opiniones