
Number Cookbook
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
-
Narrado por:
-
De:
Acerca de esta escucha
This research paper examines the numerical understanding and processing abilities (NUPA) of large language models (LLMs). The authors create a benchmark to test LLMs on four numerical representations (integers, floating-point numbers, fractions, and scientific notation) across 17 tasks grouped into four ability categories. They find that, despite strong problem-solving capabilities, LLMs struggle with basic numerical operations. The paper evaluates methods to enhance NUPA during pretraining and finetuning, such as specialized tokenizers, positional encodings, and data formats, and notes the limitations of chain-of-thought techniques for numerical tasks. The authors call for further research to improve LLMs' fundamental numerical capabilities.
📎 Link to paper
adbl_web_global_use_to_activate_webcro805_stickypopup
Todavía no hay opiniones