Mit schicken Berichten ist BI nicht getan! | Mit Simon Bongers von ROSE Bikes
No se pudo agregar al carrito
Add to Cart failed.
Error al Agregar a Lista de Deseos.
Error al eliminar de la lista de deseos.
Error al añadir a tu biblioteca
Error al seguir el podcast
Error al dejar de seguir el podcast
-
Narrado por:
-
De:
Tim spricht mit Simon Bongers darüber, warum Business Intelligence (BI) weit über Visualisierungen hinausgeht und wie Datenmodelle, Governance und agile Produktentwicklung zusammenspielen. Anhand konkreter Beispiele aus der BI-Praxis von ROSE Bikes demonstriert Simon, wie Datenqualität, Modellierung und Prozesse fundierte Entscheidungen ermöglichen.
Begrüßung und WeihnachtsauftaktTim eröffnet die Folge im Weihnachtssetting und stellt Simon von ROSE Bikes vor. Direkt zu Beginn geht es darum, wie Fahrräder und BI gleichermaßen Geschenke mit Wirkung sein können.
Lerne Simon kennen:
https://www.linkedin.com/in/simon-bongers-b061431ba/?originalSubdomain=de
ROSE Bikes und ROSE DigitalSimon erläutert die Struktur von ROSE Bikes und seiner Tochter ROSE Digital, die aus einer übernommenen Agentur hervorgegangen ist. Heute bündelt ROSE Digital den gesamten IT-Bereich inklusive Business Intelligence (BI).
Erfahre mehr zu ROSE Bikes unter
- https://www.rosebikes.de/,
- https://www.instagram.com/rose_bikes/?hl=de,
- https://www.instagram.com/rosecircle/
- oder https://de.linkedin.com/company/rose-bikes
[Anzeige] Haufe Akademie: Sponsor & KI-WeiterbildungTim stellt die Haufe Akademie als Sponsor des Podcasts vor und weist auf die Future Jobs Classes hin. Im Fokus steht die zertifizierte Weiterbildung zum KI-Manager, in der die Teilnehmenden lernen, KI-Potenziale in Unternehmen zu erkennen und umzusetzen: https://haufe-akademie.de/ki
Mythos BI: Warum bunte Charts nicht reichenCharts sind nur die letzte und sichtbare Schicht eines BI-Produkts. Entscheidend sind Kontext, Definitionen und die Herkunft der Daten. Ohne eine valide Grundlage bleibt jede Visualisierung oberflächlich.
Integration mehrerer DatenquellenSimon beschreibt, wie Daten aus Meta, LinkedIn und weiteren Systemen über eine API ins Core-Data-Warehouse geladen werden. Anschließend werden die Daten abgeglichen, geprüft und kombiniert .
Komplexität durch Mapping und DatenvalidierungIDs, Kampagnennamen oder Nutzerkennungen unterscheiden sich je nach System und müssen daher sauber gemappt werden. Erst dieses Mapping ermöglicht integrierte Auswertungen und korrekte Kennzahlen.
Umrechnungskurse und wirtschaftliche EffekteWährungen, Fakturadaten und Wechselkursänderungen können zu Abweichungen zwischen Auftrag und Rechnungswert führen. Diese Effekte müssen im Reporting transparent abgebildet werden.
Erklärung: „Fakturadaten" sind Daten auf Rechnungen und anderen Abrechnungsbelegen.
Dimensionen- und Faktenmodell nach KimballSimon erläutert das Prinzip der zentralen Faktentabellen und der angebundenen Dimensionstabellen. Das Modell ermöglicht klare Schlüsselbeziehungen und konsistente Berechnungen im Reporting.
Weitere Details zum Modell von Kimball: https://bit.ly/4a5168l
Beispiel: Datumsdimension und WirtschaftsjahrDa Kalender- und Wirtschaftsjahre unterschiedlich verlaufen können, muss eine Datumsdimension zusätzliche Attribute bereitstellen. Damit lassen sich Year-to-Date-Analysen oder abweichende Geschäftsjahre korrekt abbilden.
Performance, Struktur und die Schneeflocken-MetapherDas Modell wird je nach...