Mapping Your Own World: Open Drones and Localized AI
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
-
Narrado por:
-
De:
What if communities could map their own worlds using low-cost drones and open AI models instead of waiting for expensive satellite imagery?
In this episode with Leen from HOT (Humanitarian OpenStreetMap Team), we explore how they're putting open mapping tools directly into communities' hands—from $500 drones that fly in parallel to create high-resolution imagery across massive areas, to predictive models that speed up feature extraction without replacing human judgment.
Key topics:
- Why local knowledge beats perfect accuracy
- The drone tasking system: how multiple pilots map 80+ square kilometers simultaneously
- AI-assisted mapping with humans in the loop at every step
- Localizing AI models so they actually understand what buildings in Chad or Papua New Guinea look like
- The platform approach: plugging in models for trees, roads, rooftop material, waste detection, whatever communities need
- The tension between speed and OpenStreetMap's principles
- Why mapping is ultimately a power game—and who decides what's on the map
Todavía no hay opiniones