
MLG 008 Math
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
-
Narrado por:
-
De:
Acerca de esta escucha
Try a walking desk to stay healthy while you study or work!
Full notes at ocdevel.com/mlg/8
Mathematics in Machine Learning- Linear Algebra: Essential for matrix operations; analogous to chopping vegetables in cooking. Every step of ML processes utilizes linear algebra.
- Statistics: The hardest part, akin to the cookbook; supplies algorithms for prediction and error functions.
- Calculus: Used in the learning phase (gradient descent), similar to baking; it determines the necessary adjustments via optimization.
- Recommendation: Learn the basics of machine learning first, then dive into necessary mathematical concepts to prevent burnout and improve appreciation.
- MOOCs: Khan Academy - Offers Calculus, Statistics, and Linear Algebra courses.
- Textbooks: Commonly recommended books for learning calculus, statistics, and linear algebra.
- Primers: Short PDFs covering essential concepts.
- The Great Courses: Offers comprehensive video series on calculus and statistics. Best used as audio for supplementing primary learning. Look out for "Mathematical Decision Making."
- Tensor: General term for any dimension list; TensorFlow from Google utilizes tensors for operations.
- Efficient computation using SimD (Single Instruction, Multiple Data) for vectorized operations.
- Gradient descent used for minimizing loss function, known as convex optimization. Recognize keywords like optimization in calculus context.
adbl_web_global_use_to_activate_webcro805_stickypopup
Todavía no hay opiniones