ML EP 12: मॉडल मूल्यांकन और ट्यूनिंग: एक गाइड Podcast Por  arte de portada

ML EP 12: मॉडल मूल्यांकन और ट्यूनिंग: एक गाइड

ML EP 12: मॉडल मूल्यांकन और ट्यूनिंग: एक गाइड

Escúchala gratis

Ver detalles del espectáculo

Obtén 3 meses por US$0.99 al mes

प्रदान किया गया स्रोत मशीन लर्निंग मॉडल के मूल्यांकन और ट्यूनिंग के महत्व की व्याख्या करता है। यह स्पष्ट करता है कि मॉडल का मूल्यांकन क्यों महत्वपूर्ण है, जिसमें केवल सटीकता से आगे बढ़ना और ओवरफिटिंग या अंडरफिटिंग से बचना शामिल है। पाठ सटीकता, प्रेसिजन, रिकॉल, F1 स्कोर, और ROC-AUC जैसी प्रमुख मूल्यांकन मेट्रिक्स को भी परिभाषित करता है, साथ ही भविष्यवाणियों को विज़ुअलाइज़ करने के लिए कन्फ्यूजन मैट्रिक्स का उपयोग कैसे करें, यह भी बताता है। इसके अतिरिक्त, यह मॉडल ट्यूनिंग की अवधारणा को कवर करता है, जिसमें हाइपरपैरामीटर को समायोजित करना और क्रॉस-वैलिडेशन जैसी तकनीकों का उपयोग करना शामिल है। अंत में, यह वास्तविक दुनिया में प्रासंगिकता, लाभ, और कमियों पर प्रकाश डालता है, इस बात पर जोर देता है कि प्रभावी एमएल मॉडल बनाने के लिए ये चरण महत्वपूर्ण हैं।

Todavía no hay opiniones