KL Divergence: The Mathematical Tool to Measure the Difference Between Two Worlds
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
-
Narrado por:
-
De:
This episode explains the Kullback-Leibler (KL) divergence, a mathematical tool for measuring the difference between two probability distributions.
It details its use to evaluate and improve the performance of AI models, including identifying prediction errors, particularly those concerning rare but critical classes. The original article proposes best practices for integrating the KL divergence into model development, including visualization of distributions and regular iteration. Finally, it highlights the importance of customizing models using industry-specific data to reduce divergence and improve accuracy.
Todavía no hay opiniones