D-Wave Cryogenic Breakthrough and QuEra-ABCI Hybrid: The Quantum Supercomputer Revolution Begins
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
-
Narrado por:
-
De:
Imagine standing in a cryogenically chilled lab at NASA's Jet Propulsion Laboratory, the air humming with the faint whir of dilution refrigerators plunging to millikelvin temperatures. That's where I, Leo—your Learning Enhanced Operator—was this week, witnessing D-Wave Quantum's game-changing announcement just days ago on January 12th. They cracked the cryogenic control electronics puzzle, embedding stable circuitry directly inside the ultra-cold chamber for Fluxonium qubits. No more exponential wiring nightmares—this hybrid leap turns quantum from physics pipe dream into scalable engineering.
But the real fireworks? QuEra's Gemini system, now fused with Japan's ABCI-Q supercomputer at AIST—2,000 NVIDIA GPUs orchestrating neutral-atom qubits. Announced fresh at recent integrations, this is today's most riveting quantum-classical hybrid: the world's first true quantum supercomputer. Picture it: classical beasts handle error correction, data orchestration, and heavy preprocessing, while QuEra's 260 digital qubits shuttle atoms like cosmic chess pieces, executing massively parallel gates. Neutral atoms sidestep superconducting's cryogenic gluttony—no liquid helium oceans needed—just laser-trapped rubidium ions dancing in optical tweezers, enabling long-range entanglement without mile-long cables.
Let me paint the quantum heart: in Gemini, qubits live in distinct zones—storage, entangling, readout—mirroring your laptop's CPU, RAM, cache. Researchers, led by Mikhail Lukin at Harvard, just demoed 96 logical qubits from 400 physical ones, distilling magic states for universal gates. It's dramatic: superposition lets one qubit explore 2^n states simultaneously, like a million monkeys typing Shakespeare in parallel, while classical GPUs decode errors via machine learning, slashing circuit depth by half. Fujitsu predicts this hybrid infrastructure dominates 2026—quantum for exponential sampling in drug discovery or materials sims, classical validating every spooky result. Think chemical firms optimizing catalysts; it's quantum parallelism meeting classical reliability, birthing quantum-centric supercomputing.
This mirrors global flux: D-Wave's on-chip controls with JPL compress timelines like Moore's Law on steroids, while SuperQ's ChatQLM at CES 2026 routes optimizations to quantum backends via mobile apps. Everyday parallel? Your brain's neurons firing probabilistically, entangled in thought—hybrids amplify that.
We're not chasing qubit counts anymore; hybrids deliver value now, paving fault-tolerant 2030s. The quantum storm brews—join it.
Thanks for tuning into Quantum Computing 101. Questions or topic ideas? Email leo@inceptionpoint.ai. Subscribe now, and this has been a Quiet Please Production—visit quietplease.ai for more.
For more http://www.quietplease.ai
Get the best deals https://amzn.to/3ODvOta
This content was created in partnership and with the help of Artificial Intelligence AI
Todavía no hay opiniones