Controlling AI Models from the Inside
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
-
Narrado por:
-
De:
As generative AI moves into production, traditional guardrails and input/output filters can prove too slow, too expensive, and/or too limited. In this episode, Alizishaan Khatri of Wrynx joins Daniel and Chris to explore a fundamentally different approach to AI safety and interpretability. They unpack the limits of today’s black-box defenses, the role of interpretability, and how model-native, runtime signals can enable safer AI systems.
Featuring:
- Alizishaan Khatri – LinkedIn
- Chris Benson – Website, LinkedIn, Bluesky, GitHub, X
- Daniel Whitenack – Website, GitHub, X
Upcoming Events:
- Register for upcoming webinars here!
Todavía no hay opiniones