Bees, Trees, and Degrees: SSU Capstone Interviews
No se pudo agregar al carrito
Add to Cart failed.
Error al Agregar a Lista de Deseos.
Error al eliminar de la lista de deseos.
Error al añadir a tu biblioteca
Error al seguir el podcast
Error al dejar de seguir el podcast
-
Narrado por:
-
De:
This season finale episode features interviews with two SSU computer science capstone teams applying AI/ML to real-world problems: Sean Belingheri's edge computing project using YOLO on a Raspberry Pi to identify queen bees for hobbyist beekeepers, and "The Woods Boys" team using satellite data from Google Earth Engine with multiple ML classifiers to automate land cover classification in Sonoma County.
Credits
Cover Art by Brianna Williams
TMOM Intro Music by Danny Meza
A special thank you to these talented artists for their contributions to the show.
Links and Reference
---------------------------------------------
YOLO (You Only Look Once) Object Detection: https://docs.ultralytics.com/ (Official Ultralytics YOLO Documentation)
HOG-PCA-SVM Pipeline: https://ieeexplore.ieee.org/document/8971585/
Raspberry Pi 5: https://www.raspberrypi.com/products/raspberry-pi-5/
Honeybee Democracy (Book): https://press.princeton.edu/books/hardcover/9780691147215/honeybee-democracy
NVIDIA Jetson Nano: https://developer.nvidia.com/embedded/jetson-nano
Google Earth Engine: https://earthengine.google.com/
COCO Dataset: https://cocodataset.org/
QGIS: https://qgis.org/
Google Colab: https://colab.research.google.com/
Royal Jelly (Beekeeping): https://en.wikipedia.org/wiki/Royal_jelly
Confusion Matrix: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
Shapefile (GIS): https://en.wikipedia.org/wiki/Shapefile