
Understanding Mixture of Experts
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
$0.00 por los primeros 30 días
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.67
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh

Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features:
1. Beginner to Advanced Progression: The book is structured to cater to both beginners with a basic understanding of deep learning and advanced learners seeking to master cutting-edge techniques.
2. Simple Language and Intuitive Analogies: Complex mathematical and architectural concepts are explained using the simplest possible language and real-world analogies to ensure clarity and retention.
3. Hands-On Code Examples: Rich, practical code examples are provided throughout the book using industry-standard frameworks like PyTorch and TensorFlow, allowing readers to directly apply what they learn.
4. Real-World Case Studies: In-depth analysis of landmark MoE models like Google's Switch Transformer and Mistral's Mixtral 8x7B provides context and insight into how MoE is used in practice.
5. Complete Capstone Project: A dedicated final chapter guides readers through a full, end-to-end project, including all working code and step-by-step explanations, to solidify their learning and build a portfolio-worthy piece of work.
6. Focus on Both Theory and Practice: A balanced approach ensures that readers not only know how to implement MoE models but also deeply understand the theoretical principles why they work.
To Whom This Book Is For:
This book is an essential resource for:
1. B.Tech and M.Tech Students: Undergraduates and postgraduates in Computer Science, AI, Data Science, and related disciplines will find it an invaluable textbook that aligns with their curriculum.
2. AI and Machine Learning Practitioners: Engineers and data scientists in the industry looking to upskill and incorporate scalable MoE architectures into their workflows.
3. Academic Researchers: Researchers exploring new frontiers in deep learning, model scaling, and computational efficiency will find this a comprehensive reference.
4. Self-Taught Learners and Enthusiasts: Individuals with a foundational knowledge of Python and deep learning who are passionate about understanding the technology behind next-generation AI models.
My ultimate goal is to empower you, the next generation of AI innovators, with the knowledge and skills to not just understand Mixture of Experts, but to confidently build, adapt, and deploy them to solve the complex challenges of tomorrow. Welcome to the future of scalable Artificial Intelligence.
Todavía no hay opiniones