True Quantum AI
Solving Intractable Problem
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Exclusivo para miembros Prime: ¿Nuevo en Audible? Obtén 2 audiolibros gratis con tu prueba.
Elige 1 audiolibro al mes de nuestra inigualable colección.
Acceso ilimitado a nuestro catálogo de más de 150,000 audiolibros y podcasts.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.40
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Philosophy: A Structured, Hands-On Learning Framework
The core philosophy of this book is "Implementation First." It operates on the principle that true understanding in an applied field like Quantum AI (QAI) comes from building, not just from abstract theorization. While it provides the necessary theoretical foundations, every concept is immediately tethered to a practical application. The goal is to demystify QAI, transforming it from a complex, esoteric subject into an accessible and powerful tool for problem-solving. I prioritized clarity, simplicity, and a direct, step-by-step approach, ensuring that readers can build functional QAI models and applications from the ground up.
Key Features
1. Application-Centric: The primary focus is on how to develop QAI solutions and apps, not just on the theory behind them.
2. Beginner-Friendly: Assumes no prior knowledge of quantum mechanics. Concepts like qubits, superposition, and entanglement are explained from a computer science perspective.
3. End-to-End Project: The final chapter features a complete DIY capstone project, including system design, implementation details, and fully explained, working code.
4. Comprehensive Coverage: Each chapter addresses the design, architecture, implementation, and future scope of the topic at hand, providing a holistic understanding.
5. Visual and Explanatory: Ample use of diagrams, flowcharts, and commented code to explain complex models and architectures visually and intuitively.
Key Takeaways
Upon completing this book, the reader will be able to:
1. Understand the Core Concepts: Clearly explain the principles of quantum computing and how they merge with AI to solve problems beyond the capacity of classical machines.
2. Develop Quantum Algorithms: Write code to implement fundamental quantum algorithms and circuits using standard industry tools like Qiskit.
3. Build QML Models: Design and train Quantum Machine Learning models, including Quantum Support Vector Machines (QSVM) and Variational Quantum Classifiers (VQC).
4. Implement Quantum Neural Networks: Construct and experiment with Quantum Neural Networks (QNNs) for tasks like pattern recognition.
5. Solve Optimization Problems: Formulate and solve complex optimization problems using quantum approaches like QAOA and Quantum Annealing.
6. Deploy a QAI Application: Build and understand a complete, working QAI project from problem definition to final code implementation.
Disclaimer: Earnest request from the Author.
Kindly go through the table of contents and refer kindle edition for a glance on the related contents.
Thank you for your kind consideration!
Todavía no hay opiniones