Transfer Learning
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Elige 1 audiolibro al mes de nuestra inigualable colección.
Escucha todo lo que quieras de entre miles de audiolibros, Originals y podcasts incluidos.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.30
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features:
1. Lucid and Simple Language: Complex topics are broken down into easy-to-digest explanations, making the book accessible to students from various engineering backgrounds.
2. Practical Code Examples: Every major concept is accompanied by code snippets, demonstrating how to implement the techniques using popular, industry-standard libraries.
3. Intuition-First Approach: We use visual aids, flowcharts, and relatable analogies to build strong intuition, which is crucial for effective problem-solving.
4. Structured Learning Path: The 10-chapter structure provides a logical journey from fundamentals to advanced frontiers, making it ideal for a semester-long course.
5. Real-World Case Studies: The book explores impactful applications, from diagnosing diseases with medical scans to building intelligent chatbots, showing the real-world relevance of the material.
6. Future-Ready Content: Includes up-to-date coverage of the latest advancements, such as Transformer models, Foundation Models, and Self-Supervised Learning, ensuring students are learning current and future-proof skills.
7. End-of-Chapter Resources: Each chapter concludes with a concise summary, a set of review questions (both theoretical and practical), and a list of references for further reading.
Who Should Read This Book?
1. B.Tech/B.E. Students in Computer Science, Information Technology, and AI/ML.
2. M.Tech/M.E. Students specializing in AI, Data Science, and Machine Learning.
3. Software Developers and Practitioners looking to integrate powerful AI capabilities into their applications without starting from scratch.
4. Self-Taught AI Enthusiasts who want a structured, comprehensive, and practical guide to one of the most important topics in modern AI.
This book empowers you to stand on the shoulders of giants, leveraging vast, pre-existing knowledge to build intelligent systems faster, better, and with less data.
Todavía no hay opiniones