Time Series Analysis Audiolibro Por Ajit Singh arte de portada

Time Series Analysis

Muestra de Voz Virtual
Prueba por $0.00
Elige 1 audiolibro al mes de nuestra inigualable colección.
Escucha todo lo que quieras de entre miles de audiolibros, Originals y podcasts incluidos.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.50

Compra ahora por $6.50

OFERTA POR TIEMPO LIMITADO | Obtén 3 meses por US$0.99 al mes

$14.95/mes despues- se aplican términos.
Background images

Este título utiliza narración de voz virtual

Voz Virtual es una narración generada por computadora para audiolibros..
"Time Series Analysis: From Classical Methods to Modern Machine Learning" is a comprehensive, practical, and accessible guide for students and professionals seeking to master the art and science of forecasting. In today's data-driven world, the ability to analyze time-dependent data is a critical skill across industries—from finance and engineering to retail and climate science. This book provides a seamless learning pathway, taking you from the foundational principles of time series analysis to the cutting-edge of deep learning.

Key Features of This Book:


1. Progressive Learning Path: Logically progresses from simple statistical methods to advanced deep learning models, building a strong conceptual foundation.
2. Hands-On Python Practicals: Every chapter includes detailed, step-by-step code implementations using popular libraries like Pandas, Statsmodels, Scikit-learn, and TensorFlow/PyTorch.
3. Real-World Datasets and Use Cases: Learn using practical examples from retail, finance, energy, and environmental science, making the concepts tangible and relevant.
4. Intuitive Explanations: Complex mathematical and algorithmic concepts are broken down into simple, easy-to-understand terms with helpful visualizations and analogies.
5. Complete End-to-End Capstone Project: A full chapter dedicated to a comprehensive project that integrates all the skills learned throughout the book into a single, cohesive workflow.
6. Focus on Both "Why" and "How": Balances theoretical understanding with practical implementation, empowering you to not only use models but to know which model to use and why.



Each chapter is crafted as a self-contained module with clear learning outcomes. Well. I start with a theoretical foundation, explained in the simplest possible terms using relatable analogies—from predicting café footfall to forecasting your monthly mobile data usage. This is immediately followed by hands-on practical sessions using Python, the de facto language of data science. I leverage popular, open-source libraries such as pandas, statsmodels, scikit-learn, TensorFlow, and PyTorch, ensuring that the skills you acquire are current, in-demand, and directly transferable to industry challenges.
Informática Aprendizaje automático Ciencia de datos Programación
Todavía no hay opiniones