Time Series Analysis
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Elige 1 audiolibro al mes de nuestra inigualable colección.
Escucha todo lo que quieras de entre miles de audiolibros, Originals y podcasts incluidos.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.50
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features of This Book:
1. Progressive Learning Path: Logically progresses from simple statistical methods to advanced deep learning models, building a strong conceptual foundation.
2. Hands-On Python Practicals: Every chapter includes detailed, step-by-step code implementations using popular libraries like Pandas, Statsmodels, Scikit-learn, and TensorFlow/PyTorch.
3. Real-World Datasets and Use Cases: Learn using practical examples from retail, finance, energy, and environmental science, making the concepts tangible and relevant.
4. Intuitive Explanations: Complex mathematical and algorithmic concepts are broken down into simple, easy-to-understand terms with helpful visualizations and analogies.
5. Complete End-to-End Capstone Project: A full chapter dedicated to a comprehensive project that integrates all the skills learned throughout the book into a single, cohesive workflow.
6. Focus on Both "Why" and "How": Balances theoretical understanding with practical implementation, empowering you to not only use models but to know which model to use and why.
Each chapter is crafted as a self-contained module with clear learning outcomes. Well. I start with a theoretical foundation, explained in the simplest possible terms using relatable analogies—from predicting café footfall to forecasting your monthly mobile data usage. This is immediately followed by hands-on practical sessions using Python, the de facto language of data science. I leverage popular, open-source libraries such as pandas, statsmodels, scikit-learn, TensorFlow, and PyTorch, ensuring that the skills you acquire are current, in-demand, and directly transferable to industry challenges.
Todavía no hay opiniones