The LLM Stack Audiolibro Por Ajit Singh arte de portada

The LLM Stack

Systems Engineering for Generative AI at Scale

Muestra de Voz Virtual
Prueba por $0.00
Prime logotipo Exclusivo para miembros Prime: ¿Nuevo en Audible? Obtén 2 audiolibros gratis con tu prueba.
Elige 1 audiolibro al mes de nuestra inigualable colección.
Acceso ilimitado a nuestro catálogo de más de 150,000 audiolibros y podcasts.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.

The LLM Stack

De: Ajit Singh
Narrado por: Virtual Voice
Prueba por $0.00

$14.95 al mes después de 30 días. Cancela en cualquier momento.

Compra ahora por $6.30

Compra ahora por $6.30

Background images

Este título utiliza narración de voz virtual

Voz Virtual es una narración generada por computadora para audiolibros..
"The LLM Stack: Systems Engineering for Generative AI at Scale" provides a comprehensive, end-to-end exploration of the infrastructure, tools, and techniques required to build, deploy, and operate large language model applications in the real world.

Philosophy:

The core philosophy of this book is that Large Language Models are complex, distributed computing problems disguised as mative, focusing on performance, reliability, scalability, and cost-efficiency. My goal is to demystify the entire stack, from the GPU kernel level to the application API, providing readers with a holistic and deep understanding of how production-grade Generative AI systems are built.



Key Features:

1. Globally Relevant: The principles and technologies covered are universal, making the book a valuable resource for students and professionals worldwide.
2. End-to-End Coverage: From understanding the Transformer architecture to managing GPU clusters and monitoring production systems, the book covers the entire lifecycle of an LLM application.
3. Deep Dives: Contains dedicated chapters on cutting-edge topics like inference optimization (Quantization, PagedAttention, Speculative Decoding), serving frameworks (vLLM, TGI), and observability for generative systems.
4. Practical Capstone Project: A complete, step-by-step guide to building a Retrieval-Augmented Generation (RAG) system, one of the most popular and powerful LLM application patterns.
5. Vendor-Agnostic Principles: While we use specific open-source tools for examples, the underlying principles taught are applicable across different cloud providers and proprietary platforms.


To Whom This Book Is For:

1. B.Tech/M.Tech Computer Science Students: Students specializing in AI/ML or Systems Engineering will find this a vital textbook that prepares them for the next wave of computing.
2. Aspiring MLOps/LLMOps Engineers: This is your comprehensive guide to breaking into and excelling in one of the most sought-after roles in the tech industry.
3. Software and DevOps Engineers: Professionals looking to transition into the AI/ML space will find a structured path to understanding the unique infrastructure challenges of Generative AI.
4. Data Scientists and AI Researchers: This book will help you understand the engineering realities of deploying your models and research into production.


Welcome to the world of the LLM Stack!
Informática Programación Tecnología Estudiante Ciencia de datos Aprendizaje automático Software
Todavía no hay opiniones