The LLM Stack
Systems Engineering for Generative AI at Scale
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.30
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Philosophy:
The core philosophy of this book is that Large Language Models are complex, distributed computing problems disguised as mative, focusing on performance, reliability, scalability, and cost-efficiency. My goal is to demystify the entire stack, from the GPU kernel level to the application API, providing readers with a holistic and deep understanding of how production-grade Generative AI systems are built.
Key Features:
1. Globally Relevant: The principles and technologies covered are universal, making the book a valuable resource for students and professionals worldwide.
2. End-to-End Coverage: From understanding the Transformer architecture to managing GPU clusters and monitoring production systems, the book covers the entire lifecycle of an LLM application.
3. Deep Dives: Contains dedicated chapters on cutting-edge topics like inference optimization (Quantization, PagedAttention, Speculative Decoding), serving frameworks (vLLM, TGI), and observability for generative systems.
4. Practical Capstone Project: A complete, step-by-step guide to building a Retrieval-Augmented Generation (RAG) system, one of the most popular and powerful LLM application patterns.
5. Vendor-Agnostic Principles: While we use specific open-source tools for examples, the underlying principles taught are applicable across different cloud providers and proprietary platforms.
To Whom This Book Is For:
1. B.Tech/M.Tech Computer Science Students: Students specializing in AI/ML or Systems Engineering will find this a vital textbook that prepares them for the next wave of computing.
2. Aspiring MLOps/LLMOps Engineers: This is your comprehensive guide to breaking into and excelling in one of the most sought-after roles in the tech industry.
3. Software and DevOps Engineers: Professionals looking to transition into the AI/ML space will find a structured path to understanding the unique infrastructure challenges of Generative AI.
4. Data Scientists and AI Researchers: This book will help you understand the engineering realities of deploying your models and research into production.
Welcome to the world of the LLM Stack!
Todavía no hay opiniones