The Illustrated State Space Models
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.40
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features
1. Beginner to Advanced Coverage: The book caters to both students new to sequence modeling and advanced learners familiar with Transformers who want to explore the next generation of architectures.
2. Focus on Modern Architectures: In-depth coverage of seminal modern SSMs, including the Structured State Space for Sequences (S4) and Mamba, explaining their design, architecture, and advantages.
3. Clear and Simple Explanations: Complex mathematical and architectural concepts are broken down into simple, easy-to-understand components with clear diagrams and analogies.
4. Complete Capstone Project: The final chapter provides a complete, step-by-step guide to building a live, working project, giving students a portfolio-worthy piece of work.
To Whom This Book Is For
1. B.Tech/M.Tech Computer Science Students: The primary audience for whom this book serves as a core or elective textbook on advanced deep learning and sequence modeling.
2. AI/ML Researchers: Researchers looking for a consolidated resource on the theory and application of State Space Models as an alternative to Transformers.
3. Data Scientists and ML Engineers: Professionals seeking to update their skills with cutting-edge models for handling long-sequence data efficiently.
4. Self-Learners and Enthusiasts: Anyone with a foundational knowledge of Python and deep learning who wants to understand the next wave of AI architectures.
Todavía no hay opiniones