Site Reliability Engineering
The Generative AI Era
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.30
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Philosophy:
The core philosophy of this book is "Reliability by Design for the AI Era." We posit that the non-deterministic, complex, and often opaque nature of GenAI systems demands a new, integrated approach to reliability. It is not enough to simply "bolt on" monitoring to a prototype. Instead, reliability must be a foundational concern woven into every stage of the lifecycle, from architectural design and data ingestion to model evaluation, deployment, and ongoing operations. We treat emergent challenges like hallucinations, prompt injection, and unpredictable costs as first-class reliability problems that require systematic, engineering-driven solutions.
Key Features:
1. Comprehensive Coverage: This book offers a single, coherent resource covering the entire lifecycle of a production-grade GenAI application, from architecture to security.
2. Production-Ready Architectures: A deep dive into the practical trade-offs between patterns like Retrieval-Augmented Generation (RAG), fine-tuning, and hybrid models.
3. Focus on LLM Observability (LLM-O11y): Dedicated coverage of the new art of monitoring, including tracking token cost, latency, hallucination rates, and user feedback loops.
4. Evaluation-Driven Development: Practical guidance on building robust evaluation suites and integrating them into a CI/CD pipeline to ensure quality and prevent regressions.
5. Actionable Optimization Techniques: Concrete strategies for caching, batching, and model selection to reduce costs and improve performance.
6. Full Capstone Project: A complete, step-by-step guide to building and deploying an observable, secure, and reliable GenAI application from scratch, including all working code.
To Whom This Book Is For:
1. B.Tech/M.Tech Computer Science Students: Serves as a primary textbook for courses on Cloud Computing, DevOps, MLOps, or specialized AI Engineering electives. It provides the foundational knowledge and practical skills needed for a career in modern software and AI.
2. Software Engineers & Developers: A practical guide for those tasked with integrating LLM features into new or existing applications and ensuring they are production-ready.
3. DevOps, SRE, and MLOps Engineers: A crucial resource for adapting existing reliability practices to the unique challenges of the GenAI stack, from vector databases to inference endpoints.
4. Technical Leads and Architects: Provides the strategic framework and architectural patterns needed to make informed decisions about building, deploying, and operating reliable and cost-effective GenAI services.
Todavía no hay opiniones