Retrieval-Augmented Generation (RAG) Audiolibro Por Rajamanickam Antonimuthu arte de portada

Retrieval-Augmented Generation (RAG)

The Future of AI-Powered Knowledge Retrieval

Muestra de Voz Virtual
Prueba por $0.00
Prime logotipo Exclusivo para miembros Prime: ¿Nuevo en Audible? Obtén 2 audiolibros gratis con tu prueba.
Elige 1 audiolibro al mes de nuestra inigualable colección.
Escucha todo lo que quieras de entre miles de audiolibros, Originals y podcasts incluidos.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.

Retrieval-Augmented Generation (RAG)

De: Rajamanickam Antonimuthu
Narrado por: Virtual Voice
Prueba por $0.00

$14.95 al mes después de 30 días. Cancela en cualquier momento.

Compra ahora por $4.99

Compra ahora por $4.99

Background images

Este título utiliza narración de voz virtual

Voz Virtual es una narración generada por computadora para audiolibros..

Unlock the future of AI-driven knowledge systems with this comprehensive guide to Retrieval-Augmented Generation (RAG)—an innovative approach combining powerful language models and advanced information retrieval techniques. This ebook is a must-read for developers, data scientists, and AI enthusiasts looking to master the cutting edge of AI-powered solutions.

Find below the chapters of this ebook.

Chapter 1 - Introduction to RAG

  • 1.1 What is Retrieval-Augmented Generation (RAG)?
  • 1.2 Why is RAG Important?
  • 1.3 Applications of RAG
  • 1.4 The Evolution of RAG

Chapter 2: Understanding the Components of RAG

  • 2.1 Information Retrieval Systems
  • 2.2 Large Language Models (LLMs)
  • 2.3 How RAG Combines Retrieval and Generation

Chapter 3: How RAG Works

  • 3.1 The RAG Process: An Overview
  • 3.2 The Inner Workings of RAG: A Detailed Breakdown
  • 3.3 An Example Workflow: End-to-End RAG in Action

Chapter 4: Implementing RAG: Tools, Frameworks, and Code Examples

  • 4.1 Tools and Frameworks for Building RAG Systems
  • 4.2 Step-by-Step Guide: Building a Simple RAG System
  • 4.3 Scaling Up: Advanced RAG Implementations
  • 4.4 Chunking Stategies
  • 4.5 Hybrid Search
  • 4.6 Summary and Next Steps

Chapter 5: Real-World Applications of RAG

  • 5.1 RAG in Healthcare
  • 5.2 RAG in Legal and Compliance
  • 5.3 RAG in Customer Support
  • 5.4 RAG in Content Creation
  • 5.5 RAG in Education and Training
  • 5.6 Summary

Chapter 6: Challenges and Limitations of RAG

  • 6.1 Data Quality and Relevance
  • 6.2 Handling Ambiguity and Context
  • 6.3 Computational Resources and Scalability
  • 6.4 Ethical and Privacy Concerns
  • 6.5 Future Directions and Research
  • 6.6 Summary

Chapter 7: Best Practices for Deploying and Maintaining RAG Systems

  • 7.1 Deployment Strategies
  • 7.2 Monitoring and Performance Optimization
  • 7.3 Data Management and Updates
  • 7.4 Maintenance and Upgrades
  • 7.5 User Feedback and Continuous Improvement
  • 7.6 Summary

Chapter 8: Future Trends in Retrieval-Augmented Generation

  • 8.1 Advancements in Language Models
  • 8.2 Enhanced Retrieval Techniques
  • 8.3 Ethical and Responsible AI
  • 8.4 Integration with Emerging Technologies
  • 8.5 Future Research Directions
  • 8.6 Summary

Chapter 9: Conclusion and Future Outlook

  • 9.1 Recap of Key Concepts
  • 9.2 Future Outlook
  • 9.3 Final Thoughts

Useful Links

Informática Programación Ciencia de datos Cuidado de la salud Aprendizaje automático
Todavía no hay opiniones