Rebooting AI
Building Artificial Intelligence We Can Trust
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
$0.00 por los primeros 30 días
POR TIEMPO LIMITADO
Obtén 3 meses por $0.99 al mes + $20 de crédito Audible
La oferta termina el 1 de diciembre de 2025 11:59pm PT.
Exclusivo para miembros Prime: ¿Nuevo en Audible? Obtén 2 audiolibros gratis con tu prueba.
Por tiempo limitado, únete a Audible por $0.99 al mes durante los primeros 3 meses y obtén un crédito adicional de $20 para Audible.com. La notificación del bono de crédito se recibirá por correo electrónico.
1 bestseller o nuevo lanzamiento al mes, tuyo para siempre.
Escucha todo lo que quieras de entre miles de audiolibros, podcasts y Originals incluidos.
Se renueva automáticamente por US$14.95 al mes después de 3 meses. Cancela en cualquier momento.
Elige 1 audiolibro al mes de nuestra inigualable colección.
Escucha todo lo que quieras de entre miles de audiolibros, Originals y podcasts incluidos.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $15.75
-
Narrado por:
-
Kaleo Griffith
Despite the hype surrounding AI, creating an intelligence that rivals or exceeds human levels is far more complicated than we have been led to believe. Professors Gary Marcus and Ernest Davis have spent their careers at the forefront of AI research and have witnessed some of the greatest milestones in the field, but they argue that a computer beating a human in Jeopardy! does not signal that we are on the doorstep of fully autonomous cars or superintelligent machines. The achievements in the field thus far have occurred in closed systems with fixed sets of rules, and these approaches are too narrow to achieve genuine intelligence.
The real world, in contrast, is wildly complex and open-ended. How can we bridge this gap? What will the consequences be when we do? Taking inspiration from the human mind, Marcus and Davis explain what we need to advance AI to the next level, and suggest that if we are wise along the way, we won't need to worry about a future of machine overlords. If we focus on endowing machines with common sense and deep understanding, rather than simply focusing on statistical analysis and gatherine ever larger collections of data, we will be able to create an AI we can trust—in our homes, our cars, and our doctors' offices. Rebooting AI provides a lucid, clear-eyed assessment of the current science and offers an inspiring vision of how a new generation of AI can make our lives better.
Los oyentes también disfrutaron:
Las personas que vieron esto también vieron:
The need for Deep understanding.
Se ha producido un error. Vuelve a intentarlo dentro de unos minutos.
it's required reading for AI researchers and enthusiasts.
entertaining
Se ha producido un error. Vuelve a intentarlo dentro de unos minutos.
Insightful & nuanced take on AI, cuts through hype
Se ha producido un error. Vuelve a intentarlo dentro de unos minutos.
Excellent
Se ha producido un error. Vuelve a intentarlo dentro de unos minutos.
Cheers
Great Epilogue
Se ha producido un error. Vuelve a intentarlo dentro de unos minutos.
The story is very well written, and couldn’t have come at a better time!
Insightful
Se ha producido un error. Vuelve a intentarlo dentro de unos minutos.
I’ve wondered about the lack of cognitive models in deep learning systems, this book does as well
Se ha producido un error. Vuelve a intentarlo dentro de unos minutos.
Full of pragmatic examples of how and why deep learning fails in NLP, it also offers different frameworks for how and where to start building actual systems that can understand.
A must read for anyone in NLP
Se ha producido un error. Vuelve a intentarlo dentro de unos minutos.
I have been waiting for the industry to finally get critical with itself. Thanks for this thoughtful treatment of a subject that has had misleading and frothy treatment from the media, unrealistic and misguided expectation-setting from software vendors, and too little serious self examination from practitioners. The authors have set out a pretty good set of “functional requirements” for a generalized AI here. They’ve done a good job of articulating 1. Why the current data-driven deep learning cannot progress beyond simple and very narrow tasks, 2. A common sense understanding of the world is missing from these approaches 3. a conceptual faculty able to learn without 10,000 high quality labeled examples beforehand is needed; and 4. What potential corrective actions might be taken.
Importantly, they have suggested a reunification of the two divergent AI traditions is ultimately what is needed to progress and fix the current course. Additionally they implied (or I read into it) that a more trans-disciplinary approach is needed, given the stated need for understanding the functionality of the brain, not just at a biological/ chemical level, but at a fundamental metaphysical / philosophical level. They paint a but challenging road forward, but “tough love” for AI is the only hope for the field, and so I say, thank you.
Serious and thoughtful redirect for AI
Se ha producido un error. Vuelve a intentarlo dentro de unos minutos.
This book is a must "read" for anyone who follows AI.
Cuts Through the Massive Hype Behind ML
Se ha producido un error. Vuelve a intentarlo dentro de unos minutos.