
Python for AI Developers
A Beginner's Guide to Artificial Intelligence Programming
No se pudo agregar al carrito
Add to Cart failed.
Error al Agregar a Lista de Deseos.
Error al eliminar de la lista de deseos.
Error al añadir a tu biblioteca
Error al seguir el podcast
Error al dejar de seguir el podcast
$0.99/mes por los primeros 3 meses

Compra ahora por $3.99
No default payment method selected.
We are sorry. We are not allowed to sell this product with the selected payment method
-
Narrado por:
-
Virtual Voice

Este título utiliza narración de voz virtual
Acerca de esta escucha
Chapter 1: Introduction to Python for AI
🔹 1.1 Why Python for AI Development?
🔹 1.2 Installing Python and Setting Up Your Development Environment
🔹 1.3 Introduction to Jupyter Notebooks and Google Colab
🔹 1.4 Python Basics Recap: Let’s Get Coding!
🎯 Hands-On Practice
🚀 What’s Next?
Chapter 2: Core Python Programming
🔹 2.1 Control Flow: If-Else, Loops
🔹 2.2 Functions and Modules
🔹 2.3 Object-Oriented Programming (OOP) in Python
🔹 2.4 Exception Handling
🧪 Practice Time
🚀 What’s Next?
Chapter 3: Essential Python Libraries for AI
🔹 3.1 NumPy: Handling Arrays and Matrices
🔹 3.2 Pandas: Data Analysis and DataFrames
🔹 3.3 Matplotlib & Seaborn: Data Visualization
🔹 3.4 Scikit-learn: Introduction to Machine Learning
🧪 Practice Time
🚀 What’s Next?
Chapter 4: Working with Data
🔹 4.1 Loading and Preprocessing Datasets
🔹 4.2 Handling Missing Data and Outliers
🔹 4.3 Feature Engineering and Scaling
🧪 Practice Time
📌 Quick Tips for Better Data Handling
🚀 What’s Next?
Chapter 5: Introduction to Machine Learning with Python
🔹 5.1 Supervised vs. Unsupervised Learning
🔹 5.2 Building a Simple Machine Learning Model with Scikit-learn
🔹 5.3 Evaluating Model Performance
🛠️ Other Useful Metrics
💡 Pro Tips
🧪 Practice Time
🚀 What’s Next?
Chapter 6: Deep Learning with Python
🔹 6.1 Introduction to Neural Networks
🔹 6.2 Using TensorFlow and PyTorch
🔸 6.3 Building a Simple Neural Network
🔹 6.4 Training and Evaluating Deep Learning Models
🔹 Bonus: PyTorch Version (Optional for Advanced Users)
🧪 Practice Time
📌 Quick Tips
🚀 What’s Next?
Chapter 7: Natural Language Processing (NLP) with Python
🔹 7.1 Tokenization and Text Processing
🔹 7.2 Word Embeddings and Transformers
🔹 7.3 Building an NLP Model with Hugging Face
🧪 Practice Time
📌 Quick Tips
🚀 What’s Next?
Chapter 8: Computer Vision with Python
🔹 8.1 Working with OpenCV
🔹 8.2 Image Classification with TensorFlow/Keras
🔹 8.3 Object Detection Basics
🧪 Practice Time
📌 Quick Tips
🚀 What’s Next?
Chapter 9: AI Model Deployment
🔹 9.1 Saving and Loading AI Models
🔹 9.2 Deploying Models with Flask
🔹 9.3 Deploying with FastAPI (Modern & Fast 🚀)
🔹 9.4 Running AI Models in the Cloud
🧪 Practice Time
📌 Quick Tips
🚀 What’s Next?
Chapter 10: Advanced AI Topics & Next Steps
🔹 10.1 Reinforcement Learning (RL) Overview
🔹 10.2 Generative AI & Large Language Models (LLMs)
🔹 10.3 Trends and Future of AI
🔹 10.4 Career Roadmap in AI
🧭 Your Learning Journey: What’s Next?
🧪 Final Challenge
🧠 Final Thoughts