
Natural Language to Code
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
$0.00 por los primeros 30 días
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $8.90
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh

Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features:
1. Beginner to Advanced Trajectory: The book follows a logical progression, starting with fundamental concepts for beginners and gradually introducing advanced topics like Transformers, Large Language Models (LLMs), and prompt engineering for advanced learners.
2. Hands-On Practical Approach: Learning is reinforced through numerous code examples, practical exercises, and hands-on tutorials using popular Python libraries like Hugging Face Transformers, TensorFlow, and PyTorch.
3. Real-World Case Studies: Chapters include case studies of real-world applications like GitHub Copilot and other AI coding assistants to provide context and illustrate the impact of the technology.
4. Focus on the Full Lifecycle: The book covers the end-to-end process of building an NL-to-Code system, including data collection, preprocessing, model architecture, training, evaluation metrics (e.g., BLEU, CodeBLEU), and deployment strategies.
5. Complete Capstone Project: The final chapter guides the reader through building a complete, working DIY project from scratch, consolidating all the concepts learned throughout the book into a tangible, portfolio-worthy application.
6. Simple and Intuitive Explanations: Complex algorithms and architectures are broken down into simple, easy-to-understand components, aided by clear diagrams, analogies, and real-life examples.
7. NEP 2020 & Global Syllabus Compliant: The structure and content are designed to foster multidisciplinary thinking, problem-solving, and practical skills, making it perfectly suited for modern engineering curricula in India and worldwide.
To Whom This Book Is For:
1. B.Tech/M.Tech Students: An ideal textbook for courses in Artificial Intelligence, Machine Learning, Natural Language Processing, and Advanced Software Engineering.
2. AI/ML Aspirants and Engineers: A practical guide for those looking to specialize in the rapidly growing field of AI-powered software development.
3. Software Developers and Architects: For professionals seeking to understand and integrate AI-based code generation tools and techniques into their development workflow.
4. Academic Researchers: A consolidated reference on the state-of-the-art models, challenges, and future directions in the NL-to-Code domain.
5. Prerequisites: A basic understanding of Python programming and fundamental concepts of machine learning is recommended to make the most of this book.
This book is more than a theoretical treatise. It is a practitioner's guide. We place a strong emphasis on the entire lifecycle of an NL-to-Code system: from data collection and preprocessing to model design, training, evaluation, and deployment. We will explore the industry-standard frameworks and tools like Hugging Face, TensorFlow, and PyTorch, ensuring that the skills you acquire are immediately applicable in the real world. Every complex idea is demystified with simple analogies, clear diagrams, and practical code examples.
Todavía no hay opiniones