Multi-Modal Querying
From Embeddings to Production
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
$0.00 por los primeros 30 días
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.50
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Philosophy:
The core philosophy of this book is empowerment. My goal is to empower you to move beyond being a mere user of AI models and become a creator of intelligent systems. I believe that the ability to query and reason across different data types (text, images, audio, etc.) is a fundamental skill for the next generation of software and AI engineers. The title itself, "From Embeddings to Production," encapsulates my philosophy: I covered the full lifecycle, from the atomic unit of multi-modal understanding (the embedding) to the complexities of deploying a robust, scalable service.
Key Features
1. Foundational Clarity: Chapter 1 establishes a rock-solid foundation, defining all key terms, architectures, and components, making the book accessible even to beginners.
2. Hands-On Code and Examples: Rich with practical, executable Python code using popular and industry-standard libraries like PyTorch, Hugging Face, Faiss, and more.
3. Vector Database Deep Dive: Dedicated chapters on the critical infrastructure of multi-modal systems—vector databases—exploring their architecture, use cases, and leading open-source and managed solutions.
4. Production and Deployment Focus: Goes beyond model training to cover crucial "day two" problems: creating APIs, containerization with Docker, scaling, monitoring, and CI/CD for AI systems.
To Whom This Book Is For
This book is written for a diverse audience with a shared passion for building the future of technology:
1. B.Tech/M.Tech Computer Science Students: Serves as a primary textbook for courses on AI, Machine Learning, Deep Learning, or specialized electives on multi-modal systems. It is fully compliant with modern, skill-oriented syllabi.
2. AI/ML Practitioners and Data Scientists: A perfect resource for professionals looking to expand their skill set from unimodal to multi-modal applications and understand the engineering challenges involved.
3. Software Engineers and Architects: Provides a clear guide for developers who need to integrate multi-modal search capabilities into their applications and design robust, scalable backend systems.
4. Researchers and Academics: Offers a structured and practical overview of the field, serving as a valuable reference for the implementation and engineering aspects of multi-modal research.
Todavía no hay opiniones