Meta Learning
Building the Next Generation of AI
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
$0.00 por los primeros 30 días
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.30
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Philosophy:
The core philosophy of this book is built on two pillars: demystification and empowerment. Meta-learning is often perceived as an abstract and mathematically dense field, accessible only to a select few. This book challenges that notion by breaking down complex theories into simple, intuitive components. It follows a first-principles approach, ensuring that the reader understands why a particular method works before diving into how it is implemented. The ultimate goal is to empower you, the reader, not just to use existing meta-learning algorithms, but to understand them, critique them, and ultimately, innovate upon them.
Key Features:
1. Global Curriculum Compatibility: The topics covered are universal and map directly to syllabi for advanced undergraduate (B.Tech) and postgraduate (M.Tech) courses in Computer Science and AI across the world.
2. Hands-On & Code-First: A strong emphasis is placed on implementation. You will find extensive, well-explained Python code, primarily using popular frameworks like PyTorch and TensorFlow.
3. Comprehensive Coverage: From the fundamental architectures and frameworks to deployment strategies, ethical considerations, and future trends, the book provides a 360-degree view of the meta-learning landscape.
4. Capstone Project-Based Learning: The culmination of the book is a comprehensive, do-it-yourself capstone project in the final chapter. This project-based approach consolidates all the learned concepts into a single, tangible application, providing a portfolio-worthy piece of work and a deep, integrated understanding of the entire meta-learning pipeline.
To Whom This Book Is For
This book is written for a diverse audience of learners and builders:
1. Undergraduate and Graduate Students (B.Tech/M.Tech in CS/AI): It serves as a primary textbook that directly aligns with their curriculum, providing both theoretical knowledge and the practical skills required for projects and future careers.
2. AI/ML Practitioners and Data Scientists: Professionals looking to upskill and move beyond traditional machine learning will find this book an invaluable guide to incorporating data-efficient learning techniques into their work.
3. Academic Researchers: The book can serve as a strong foundational text for researchers entering the field, providing a structured overview of key paradigms and a launchpad for exploring more advanced topics.
Todavía no hay opiniones