Mastering LLM Application Development from Scratch
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Exclusivo para miembros Prime: ¿Nuevo en Audible? Obtén 2 audiolibros gratis con tu prueba.
Elige 1 audiolibro al mes de nuestra inigualable colección.
Acceso ilimitado a nuestro catálogo de más de 150,000 audiolibros y podcasts.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.50
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Philosophy: Application-First, Theory-Second
The core philosophy of this book is "learning by doing." I believe that proficiency in a technical discipline like AI engineering is achieved through direct application. Every concept introduced is immediately followed by practical examples, code walkthroughs, and step-by-step implementation guides. The emphasis is squarely on the how—how to architect, how to code, how to deploy, and how to maintain. I simplifid complex algorithms and architectural patterns, presenting them in the context of their practical use, ensuring that you can apply what you learn immediately.
Key Features
1. Practical Code Examples: All examples are provided with clear, well-commented code, designed for easy understanding and adaptation.
2. Production-Focused: The book's unique selling proposition is its relentless focus on "production-ready" systems. We will cover not just the "cool" AI parts, but the crucial engineering aspects: scalability, security, cost management, monitoring, and CI/CD.
3. Step-by-Step Guidance: Complex processes are broken down into simple, manageable steps, making them accessible even to beginners.
4. Real-World Case Studies: We use relatable case studies (e.g., a customer support chatbot, a document summarization service) to frame our examples, making the concepts more tangible.
Key Takeaways
Upon completing this book, you will be able to:
1. Architect an End-to-End LLM System: Design the complete architecture, from data ingestion to user interface.
2. Select and Utilize Appropriate Models: Understand the trade-offs between different models (e.g., GPT-4, Llama 3, open-source vs. API-based) and choose the right one for your use case.
3. Implement Core Application Logic: Use frameworks like LangChain or LlamaIndex to build the core functionality of your LLM application.
4. Master Prompt Engineering & RAG: Craft effective prompts and implement Retrieval-Augmented Generation (RAG) to build powerful, context-aware applications.
5. Deploy to the Cloud: Containerize your application using Docker and deploy it on a major cloud platform (e.g., AWS, GCP, or Azure).
6. Monitor and Maintain a Live System: Implement logging, monitoring, and security best practices for a production environment.
7. Build a Complete Project: Have a fully functional, portfolio-ready capstone project that demonstrates your end-to-end skills.
Disclaimer: Earnest request from the Author.
Kindly go through the table of contents and refer kindle edition for a glance on the related contents.
Thank you for your kind consideration!
Todavía no hay opiniones