Mastering AI Development with LangGraph and LangChain Audiolibro Por Ajit Singh arte de portada

Mastering AI Development with LangGraph and LangChain

Muestra de Voz Virtual

$0.00 por los primeros 30 días

Prueba por $0.00
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.

Mastering AI Development with LangGraph and LangChain

De: Ajit Singh
Narrado por: Virtual Voice
Prueba por $0.00

Escucha con la prueba gratis de Plus

Compra ahora por $6.90

Compra ahora por $6.90

OFERTA POR TIEMPO LIMITADO. Obtén 3 meses por US$0.99 al mes. Obtén esta oferta.
Background images

Este título utiliza narración de voz virtual

Voz Virtual es una narración generada por computadora para audiolibros..
"Mastering AI Development with LangGraph and LangChain" is a comprehensive, hands-on guide designed for students, developers, and AI enthusiasts who want to build sophisticated, next-generation AI applications. This book bridges the gap between theoretical knowledge of Large Language Models (LLMs) and the practical skills required to create real-world, production-ready systems. It charts a clear learning path from the foundational concepts of LangChain to the advanced, cyclical, and stateful architectures possible with LangGraph.


Key Features:


1. Beginner to Advanced Progression: The book is structured to cater to all skill levels. It starts with fundamental concepts and gradually moves to the complex, state-of-the-art patterns used in modern AI systems.
2. Hands-On, Practical Approach: Every chapter is packed with practical code examples, mini-projects, and step-by-step tutorials. Learning is done by doing.
3. Focus on LangGraph: Go beyond simple sequential chains. This book provides in-depth coverage of LangGraph, the future of building agentic and cyclical AI applications with state management.
4. Real-World Use Cases: Concepts are explained through relatable, real-world examples, such as building advanced RAG pipelines, customer support bots, and multi-agent research teams.
5. Complete Capstone Project: The final chapter guides you through building a complete, working AI application from scratch, including full code and a detailed, step-by-step implementation guide.
6. Clear and Simple Language: Complex topics are broken down into simple, easy-to-understand explanations, ensuring a smooth learning experience for all readers.


Who Should Read This Book?

1. B.Tech and M.Tech students in Computer Science, AI, and related fields.
2. Software developers and engineers looking to integrate AI and LLMs into their applications.
3. AI and Machine Learning practitioners who want to master modern LLM application frameworks.
4. Aspiring AI developers who want a structured, practical path to building a strong portfolio.
5. Product managers and tech leads who want to understand the capabilities of next-generation AI systems.


By the end of this book, you will not just be a user of AI tools; you will be an architect of intelligent systems, capable of designing and building the dynamic, responsive, and powerful AI applications of tomorrow.
Informática Tecnología Administración Ciencia de datos Aprendizaje automático Desarrollo de software
Todavía no hay opiniones