Machine Unlearning Audiolibro Por Ajit Singh arte de portada

Machine Unlearning

Muestra de Voz Virtual
Prueba por $0.00
Elige 1 audiolibro al mes de nuestra inigualable colección.
Escucha todo lo que quieras de entre miles de audiolibros, Originals y podcasts incluidos.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.90

Compra ahora por $6.90

OFERTA POR TIEMPO LIMITADO | Obtén 3 meses por US$0.99 al mes

$14.95/mes despues- se aplican términos.
Background images

Este título utiliza narración de voz virtual

Voz Virtual es una narración generada por computadora para audiolibros..
This book, Machine Unlearning for Technical Developers and AI Researchers, is designed to bridge the gap between theoretical research and practical implementation. It provides a comprehensive exploration of Machine Unlearning, covering foundational concepts, algorithmic approaches, real-world applications, and emerging challenges. The book is structured to cater to both practitioners and researchers, offering rigorous mathematical formulations, hands-on implementation techniques, and insights into legal and ethical considerations.


Why This Book?


While numerous resources exist on Machine learning, few address the critical need for Machine Unlearning in depth. This book fills that void by:

1. Demystifying Unlearning Algorithms: Presenting a systematic breakdown of state-of-the-art Unlearning techniques, including exact and approximate Unlearning, differential privacy-based methods, and data deletion frameworks.
2. Bridging Theory and Practice: Providing code snippets, case studies, and implementation guides to help developers integrate Unlearning into real-world AI systems.
3. Addressing Regulatory and Ethical Concerns: Discussing compliance with GDPR, CCPA, and other data protection laws, along with ethical implications of AI memory retention.
4. Exploring Future Directions: Analyzing open research problems, scalability challenges, and the intersection of Unlearning with federated learning, reinforcement learning, and large language models (LLMs).


Who Should Read This Book?

This book is intended for:

1. AI/ML Engineers & Developers who need to implement compliant, adaptable AI systems.
2. Data Scientists & Researchers exploring privacy-preserving ML and regulatory constraints.
3. Cybersecurity & Privacy Experts working on data governance and AI auditing.
4. Policy Makers & Legal Professionals seeking technical insights into AI regulation.


How to Use This Book:

The book is structured into three main parts:
1. Foundations of Machine Unlearning (Chapters 1-3): Covers core concepts, threat models, and legal frameworks. 2. Algorithms & Implementation (Chapters 4-7): Details exact and approximate Unlearning methods with practical examples.
3. Advanced Topics & Future Directions (Chapters 8-10): Explores federated Unlearning, reinforcement learning, and open challenges.
Informática Matemáticas Derecho Ciencia de datos Aprendizaje automático Seguridad para computadora
Todavía no hay opiniones