Machine Unlearning Audiolibro Por Ajit Singh arte de portada

Machine Unlearning

Muestra de Voz Virtual

$0.00 por los primeros 30 días

Prueba por $0.00
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.

Machine Unlearning

De: Ajit Singh
Narrado por: Virtual Voice
Prueba por $0.00

Escucha con la prueba gratis de Plus

Compra ahora por $6.90

Compra ahora por $6.90

OFERTA POR TIEMPO LIMITADO. Obtén 3 meses por US$0.99 al mes. Obtén esta oferta.
Background images

Este título utiliza narración de voz virtual

Voz Virtual es una narración generada por computadora para audiolibros..
This book, Machine Unlearning for Technical Developers and AI Researchers, is designed to bridge the gap between theoretical research and practical implementation. It provides a comprehensive exploration of Machine Unlearning, covering foundational concepts, algorithmic approaches, real-world applications, and emerging challenges. The book is structured to cater to both practitioners and researchers, offering rigorous mathematical formulations, hands-on implementation techniques, and insights into legal and ethical considerations.


Why This Book?


While numerous resources exist on Machine learning, few address the critical need for Machine Unlearning in depth. This book fills that void by:

1. Demystifying Unlearning Algorithms: Presenting a systematic breakdown of state-of-the-art Unlearning techniques, including exact and approximate Unlearning, differential privacy-based methods, and data deletion frameworks.
2. Bridging Theory and Practice: Providing code snippets, case studies, and implementation guides to help developers integrate Unlearning into real-world AI systems.
3. Addressing Regulatory and Ethical Concerns: Discussing compliance with GDPR, CCPA, and other data protection laws, along with ethical implications of AI memory retention.
4. Exploring Future Directions: Analyzing open research problems, scalability challenges, and the intersection of Unlearning with federated learning, reinforcement learning, and large language models (LLMs).


Who Should Read This Book?

This book is intended for:

1. AI/ML Engineers & Developers who need to implement compliant, adaptable AI systems.
2. Data Scientists & Researchers exploring privacy-preserving ML and regulatory constraints.
3. Cybersecurity & Privacy Experts working on data governance and AI auditing.
4. Policy Makers & Legal Professionals seeking technical insights into AI regulation.


How to Use This Book:

The book is structured into three main parts:
1. Foundations of Machine Unlearning (Chapters 1-3): Covers core concepts, threat models, and legal frameworks. 2. Algorithms & Implementation (Chapters 4-7): Details exact and approximate Unlearning methods with practical examples.
3. Advanced Topics & Future Directions (Chapters 8-10): Explores federated Unlearning, reinforcement learning, and open challenges.
Informática Matemáticas
Todavía no hay opiniones