
Large Language Model
Theoretical Concept
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.50
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh

Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
The book is designed with an academic audience in mind, particularly B.Tech, M.Tech, MCA, and other undergraduate and postgraduate learners specializing in Computer Science, Artificial Intelligence, or Data Science. Its structure aligns with syllabi from leading global institutions like MIT, Stanford, IITs, and ETH Zurich. However, the book’s appeal extends far beyond the classroom—it is equally suited for industry professionals seeking to deepen their understanding of LLMs or pivot into AI research and development.
Organized into ten comprehensive chapters, Large Language Models provides a progressive learning experience. It begins with a historical and conceptual introduction to Natural Language Processing (NLP) and the evolution of language models, followed by core principles of machine learning as applied to language, including probability, linear algebra, neural networks, embeddings, and sequence modeling. It then delves into the revolutionary Transformer architecture—the backbone of modern LLMs like GPT, BERT, and LLaMA—before addressing training strategies, benchmarking, fine-tuning techniques, ethical considerations, and real-world applications.
What sets this book apart is its commitment to humanizing AI education. The author avoids overly technical jargon and instead employs storytelling, analogies, and illustrative examples to make complex ideas more accessible. This approach not only enhances comprehension but also stimulates curiosity and critical thinking—skills essential for innovation in AI.
Whether you are a student stepping into the world of AI, a researcher looking to expand your toolkit, or a professional transitioning into NLP, Large Language Models offers a rich, engaging, and thoughtful roadmap to mastering this groundbreaking domain.
Listeners also enjoyed...

Las personas que vieron esto también vieron:

Todavía no hay opiniones