Knowledge Graph
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
$0.00 por los primeros 30 días
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.67
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features of This Book:
1. Beginner to Advanced Trajectory: The 10-chapter structure provides a smooth learning curve, starting from the absolute basics of graphs and moving to advanced topics like Graph Neural Networks (GNNs) and reasoning.
2. Hands-On and Practical: Learning is reinforced through extensive hands-on examples, code snippets (primarily in Python), and practical exercises in every chapter, using industry-standard tools.
3. Complete Capstone Project: Chapter 10 is a comprehensive, live project that guides the reader through building a real-world application from scratch, including data ingestion, querying, and code implementation.
4. Dual Paradigm Coverage: The book provides in-depth coverage of both major Knowledge Graph paradigms: RDF/SPARQL for semantic web applications and Labeled Property Graphs/Cypher (Neo4j) for enterprise applications.
5. Focus on Simplicity and Clarity: Complex theoretical concepts are broken down and explained using simple, jargon-free language and illustrated with relatable, real-life examples.
6. Industry-Relevant Tools & Technologies: Readers will gain practical experience with essential tools and libraries such as Neo4j, Protégé, SPARQL, Python, RDFLib, and spaCy, enhancing their employability.
Who Should Read This Book?
1. B.Tech/M.Tech Students in Computer Science, IT, and Data Science.
2. Software Developers and Engineers looking to integrate knowledge-based AI into their applications.
3. Data Scientists and Analysts wanting to leverage graph-based analytics and build more contextual AI models.
4. AI/ML Enthusiasts interested in understanding the synergy between Machine Learning and Knowledge Graphs.
5. Academic Researchers and self-learners seeking a structured and practical introduction to the field.
Las personas que vieron esto también vieron:
Todavía no hay opiniones