Knowledge Graph
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Elige 1 audiolibro al mes de nuestra inigualable colección.
Escucha todo lo que quieras de entre miles de audiolibros, Originals y podcasts incluidos.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.67
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features of This Book:
1. Beginner to Advanced Trajectory: The 10-chapter structure provides a smooth learning curve, starting from the absolute basics of graphs and moving to advanced topics like Graph Neural Networks (GNNs) and reasoning.
2. Hands-On and Practical: Learning is reinforced through extensive hands-on examples, code snippets (primarily in Python), and practical exercises in every chapter, using industry-standard tools.
3. Complete Capstone Project: Chapter 10 is a comprehensive, live project that guides the reader through building a real-world application from scratch, including data ingestion, querying, and code implementation.
4. Dual Paradigm Coverage: The book provides in-depth coverage of both major Knowledge Graph paradigms: RDF/SPARQL for semantic web applications and Labeled Property Graphs/Cypher (Neo4j) for enterprise applications.
5. Focus on Simplicity and Clarity: Complex theoretical concepts are broken down and explained using simple, jargon-free language and illustrated with relatable, real-life examples.
6. Industry-Relevant Tools & Technologies: Readers will gain practical experience with essential tools and libraries such as Neo4j, Protégé, SPARQL, Python, RDFLib, and spaCy, enhancing their employability.
Who Should Read This Book?
1. B.Tech/M.Tech Students in Computer Science, IT, and Data Science.
2. Software Developers and Engineers looking to integrate knowledge-based AI into their applications.
3. Data Scientists and Analysts wanting to leverage graph-based analytics and build more contextual AI models.
4. AI/ML Enthusiasts interested in understanding the synergy between Machine Learning and Knowledge Graphs.
5. Academic Researchers and self-learners seeking a structured and practical introduction to the field.
Todavía no hay opiniones