Fine-Tuning: From Theory to Production
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Elige 1 audiolibro al mes de nuestra inigualable colección.
Acceso ilimitado a nuestro catálogo de más de 150,000 audiolibros y podcasts.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.40
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Philosophy
The core philosophy of this book is "learning by doing." I believe that true mastery in a technical domain like AI is achieved not by memorizing theory, but by actively building and experimenting. Every concept is introduced with the ultimate goal of application. I prioritize intuitive explanations and practical code over complex mathematical notation, ensuring that the material is accessible to learners with a foundational understanding of programming and machine learning.
Key Features
1. Practical, Production-Focused: Emphasis is on developing deployable solutions, not just training models in a notebook.
2. Code-First Approach: Abundant, easy-to-understand code examples using Python and popular libraries like PyTorch and Hugging Face Transformers.
3. Beginner to Advanced: The content is structured to be accessible for B.Tech students while providing the depth required for M.Tech students and industry professionals.
4. Comprehensive Coverage: Spans foundational concepts, NLP and Vision applications, state-of-the-art LLM fine-tuning, and MLOps for deployment.
5. Focus on Efficiency: Includes a dedicated chapter on Parameter-Efficient Fine-Tuning (PEFT) techniques like LoRA and QLoRA, which are essential for working with large models on limited hardware.
6. Real-World Case Studies: Practical examples and case studies are used throughout to illustrate concepts and their applications.
7. End-to-End Capstone Project: A final chapter dedicated to building a complete AI application from scratch, with full code and explanations.
Key Takeaways
After completing this book, you will be able to:
1. Articulate the core concepts of transfer learning and fine-tuning.
2. Prepare and preprocess custom datasets for various fine-tuning tasks.
3. Implement fine-tuning pipelines for both NLP and Computer Vision models.
4. Master state-of-the-art techniques for efficiently fine-tuning Large Language Models (LLMs).
5. Thoroughly evaluate the performance and ethical implications of your models.
5. Package a fine-tuned model into a deployable API and understand productionization principles.
6. Independently build and deploy an end-to-end, domain-specific AI application.
Disclaimer: Earnest request from the Author.
Kindly go through the table of contents and refer kindle edition for a glance on the related contents.
Thank you for your kind consideration!
Todavía no hay opiniones