Deep Defense
AI-Powered Threat Intelligence and Behavioral Malware Detection
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Elige 1 audiolibro al mes de nuestra inigualable colección.
Escucha todo lo que quieras de entre miles de audiolibros, Originals y podcasts incluidos.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.40
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
This book ensures that students move beyond passive learning to active skill acquisition, preparing them for the challenges of the modern cybersecurity landscape. The book is structured to cater to both beginners, with foundational chapters on Python for cybersecurity, and advanced learners, with in-depth explorations of adversarial AI, model explainability (XAI), and MLOps for security.
Key Features
1. Comprehensive Coverage: Spans the entire pipeline from data collection and preprocessing of security data to model building, deployment, and adversarial defense.
2. Hands-On & Practical: Packed with code snippets, full-fledged labs, and step-by-step guides using Python, the language of choice for AI/ML.
3. Real-World Case Studies: Connects theory to practice by analyzing high-profile cyber-attacks and demonstrating how AI-driven techniques can provide effective defense.
4. Complete DIY Capstone Project: The final chapter is a detailed walkthrough of building a complete behavioral ransomware detection engine, including data preparation, model training, and a simple web-based deployment.
5. Future-Oriented: Includes dedicated sections on the future of AI in cybersecurity, covering topics like AI-driven Security Operations Centers (SOCs), Quantum Machine Learning, and Explainable AI (XAI).
To Whom This Book Is For
This book is an essential resource for:
1. B.Tech/M.Tech Students: In Compute Science, IT, and Cybersecurity specializations, serving as a core textbook that aligns with modern curricula.
2. Cybersecurity Aspirants: Individuals seeking to enter the field and wanting to build a strong, future-proof skill set in AI-powered security.
3. AI/ML Practitioners: Data scientists and machine learning engineers who wish to apply their skills to the dynamic and impactful domain of cybersecurity.
4. Security Analysts and Professionals: Existing cybersecurity practitioners who want to upgrade their skills and learn how to integrate AI and automation into their workflows.
5. Academics and Researchers: Faculty and researchers looking for a structured resource on the application of deep learning in threat intelligence and malware analysis.
Las personas que vieron esto también vieron:
Todavía no hay opiniones