Cognitive Middleware
Architectural Patterns for the AI Enterprise
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.30
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Philosophy:
The core philosophy of this book is that successful AI implementation is an architectural discipline, not just a data science one. While building accurate models is essential, creating value from AI at an enterprise scale depends on robust, scalable, and maintainable systems. This book shifts the focus from the "what" of AI algorithms to the "how" of AI systems engineering. It treats AI components as first-class citizens within a larger software ecosystem and provides the patterns, principles, and practices needed to architect that ecosystem effectively.
Key Features:
1. Beginner to Advanced Coverage: Starts with the absolute basics, making no assumptions, and gradually builds up to advanced architectural patterns and MLOps strategies.
2. Practical First: Packed with Python code snippets, framework examples (using TensorFlow, PyTorch, MLflow, Kubeflow, etc.), and configuration files.
3. Real-World Case Studies: In-depth analysis of how leading tech companies have architected their AI platforms, providing valuable, battle-tested insights.
4. Complete Capstone Project: A full, end-to-end DIY project in the final chapter guides the reader through building and deploying a live AI service.
5. Simple and Explanatory Language: Complex topics are broken down into simple, digestible explanations with clear diagrams and relatable analogies.
To Whom This Book Is For:
1. B.Tech and M.Tech Students: Undergraduate and postgraduate students in Computer Science, Information Technology, and related AI/ML specializations. It serves as both a core textbook and a practical guide.
2. Aspiring AI/ML Engineers and MLOps Engineers: Individuals looking to transition their careers into the practical, operational side of artificial intelligence.
3. Software Architects and Developers: Professionals who need to integrate AI capabilities into new or existing software systems and want to understand the architectural implications.
4. Data Scientists: Practitioners who want to learn how to productionize their models and understand the end-to-end lifecycle beyond model training.
5. Faculty and Educators: Provides a structured, project-oriented curriculum for teaching courses on AI systems, MLOps, or advanced software architecture.
Todavía no hay opiniones