Cloud 3.0 and AI Infrastructure: Design, Build, and Scale
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Elige 1 audiolibro al mes de nuestra inigualable colección.
Acceso ilimitado a nuestro catálogo de más de 150,000 audiolibros y podcasts.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.40
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Philosophy
The philosophy of Cloud 3.0 and AI Infrastructure: Design, Build, and Scale is rooted in the "Learn by Building" methodology. I believe that true understanding of technology comes not from reading about it, but from implementing it. This book moves away from the traditional "black box" approach to AI and Cloud, instead opening the lid to show how every component—from the silicon to the software—interacts to create a seamless user experience.
Key Features
1. Step-by-Step Practicality: Every chapter includes a "How to Implement" focus with minimal, easy-to-understand algorithms.
2. Cloud 3.0 Focus: Coverage of decentralized cloud, edge computing, and AI-native hardware (GPUs/TPUs).
3. Industry-Ready Case Studies: Real-world examples of how companies deploy AI at scale.
4. DIY Capstone Project: A complete, end-to-end AI application with full source code.
Key Takeaways
1. Understand the evolution from Cloud 1.0/2.0 to the AI-native Cloud 3.0.
2. Master the design and deployment of containers and microservices for AI.
3. Learn how to select and configure the right AI hardware and cloud services.
4. Develop the ability to build, fine-tune, and scale AI models in a production environment.
5. Gain hands-on experience in MLOps, security, and ethical AI deployment.
Disclaimer: Earnest request from the Author.
Kindly go through the table of contents and refer kindle edition for a glance on the related contents.
Thank you for your kind consideration!
Todavía no hay opiniones