Building Small Language Models from Scratch
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
$0.00 por los primeros 30 días
Escucha audiolibros, podcasts y Audible Originals con Audible Plus por un precio mensual bajo.
Escucha en cualquier momento y en cualquier lugar en tus dispositivos con la aplicación gratuita Audible.
Los suscriptores por primera vez de Audible Plus obtienen su primer mes gratis. Cancela la suscripción en cualquier momento.
Compra ahora por $6.30
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Key Features of the Book:
1. From-Scratch Approach: Learn by building every component of a language model, from the tokenizer to the final prediction head, for a deep, intuitive understanding.
2. Hands-On Learning: Packed with practical code examples, step-by-step tutorials, and end-of-chapter exercises to reinforce concepts.
3. Focus on PyTorch: Master the de-facto industry and research standard for deep learning to build flexible and powerful models.
4. NEP 2020 & AICTE Aligned: The curriculum is structured to promote skill-based, experiential learning with a focus on real-world problem-solving, perfectly aligning with modern educational frameworks.
5. Beginner to Advanced: The book starts with the basics and progressively builds to advanced topics, making it suitable for learners at all levels.
6. Capstone Project: A dedicated final chapter guides you through building a complete, real-world application—a domain-specific Question-Answering Bot—including full, commented code and deployment considerations.
7. Ethical AI Focus: A dedicated chapter on the ethical implications, biases, and societal impact of language models, fostering responsible innovation.
8. Clarity and Simplicity: Complex topics like the Transformer architecture and self-attention are broken down into simple, easy-to-understand explanations with clear diagrams and analogies.
Who is this book for?
1. B.Tech/M.Tech Students: Computer Science, AI, and Data Science students looking for a textbook that bridges the gap between theory and practical application.
2. Aspiring AI/ML Engineers: Individuals who want to build a strong, foundational portfolio project and gain a deep understanding of the models they will work with.
3. Software Developers: Programmers who want to transition into AI/NLP and need a structured, hands-on learning path.
4. Researchers and Academics: Individuals who need a practical guide to quickly prototype and experiment with novel language model architectures.
Todavía no hay opiniones