Building & Deploying Large Language Models
No se pudo agregar al carrito
Solo puedes tener X títulos en el carrito para realizar el pago.
Add to Cart failed.
Por favor prueba de nuevo más tarde
Error al Agregar a Lista de Deseos.
Por favor prueba de nuevo más tarde
Error al eliminar de la lista de deseos.
Por favor prueba de nuevo más tarde
Error al añadir a tu biblioteca
Por favor intenta de nuevo
Error al seguir el podcast
Intenta nuevamente
Error al dejar de seguir el podcast
Intenta nuevamente
Elige 1 audiolibro al mes de nuestra inigualable colección.
Acceso ilimitado a nuestro catálogo de más de 150,000 audiolibros y podcasts.
Accede a ofertas y descuentos exclusivos.
Premium Plus se renueva automáticamente por $14.95 al mes después de 30 días. Cancela en cualquier momento.
Compra ahora por $6.40
-
Narrado por:
-
Virtual Voice
-
De:
-
Ajit Singh
Este título utiliza narración de voz virtual
Voz Virtual es una narración generada por computadora para audiolibros..
Philosophy
The core philosophy of this book is "Learning by Doing." I believe that true understanding in an engineering discipline comes from building. Instead of presenting LLMs as a black box, I systematically deconstruct them into manageable components and guide the reader through the process of implementing each one. The focus is always on the practical question: "How can I build a system that does X?
Key Features
1. Step-by-Step From Scratch: Guides you through every stage of the LLM lifecycle, from data preparation to final deployment.
2. Practical, Code-First Approach: Every theoretical concept is immediately followed by a clear, well-commented code implementation.
3. Simplified Algorithms: Complex algorithms are broken down into simpler, understandable parts, making them accessible to beginners.
4. Focus on Application: The primary goal is to teach you how to build real-world LLM-powered applications and solutions.
5. Hands-On Labs & Case Studies: Each chapter includes practical exercises to reinforce learning and demonstrate concepts in a real-world context.
6. End-to-End Capstone Project: A complete, working project in the final chapter allows you to synthesize all your skills to build and deploy a live application.
Key Takeaways
1. Upon completing this book, you will be able to:
3. Understand the complete architecture and operational lifecycle of an LLM.
3. Implement the core components of a modern LLM, including the Transformer architecture.
4. Process and prepare large-scale text datasets for model training.
5. Train a language model from scratch and fine-tune existing pre-trained models for specific tasks.
6. Evaluate model performance using standard metrics and understand the ethical considerations.
7. Optimize a trained model for efficient inference and deployment.
8. Deploy an LLM as a scalable, production-ready service using web frameworks.
9. Build a complete, end-to-end LLM-powered application.
Disclaimer: Earnest request from the Author.
Kindly go through the table of contents and refer kindle edition for a glance on the related contents.
Thank you for your kind consideration!
Todavía no hay opiniones