Agentic AI In Action: How Swan AI Is Rewriting The Rules Of Company Building Podcast Por  arte de portada

Agentic AI In Action: How Swan AI Is Rewriting The Rules Of Company Building

Agentic AI In Action: How Swan AI Is Rewriting The Rules Of Company Building

Escúchala gratis

Ver detalles del espectáculo

How do you build a $30 million ARR business with just three people and a fleet of AI agents doing the heavy lifting?

In this episode of Tech Talks Daily, I connected with Amos Joseph, CEO of Swan AI.

From the moment we joked about AI notetakers silently observing our conversation, it was clear this discussion would go beyond surface-level automation talk. Amos is attempting something bold. He is building what he calls an autonomous business, one designed to scale with intelligence rather than headcount.

Amos has already built and exited two B2B startups using the traditional growth-at-all-costs model. Raise early, hire fast, expand the vision, chase valuation. This time, he is rewriting that script entirely. Swan AI is built around ARR per employee, human-AI collaboration, and what he describes as scaling employees rather than scaling the org chart. With more than 200 customers and only three founders, Swan is already testing whether AI agents can run real go-to-market operations autonomously.

We explored why over 90 percent of AI implementations fail and why grassroots experimentation consistently outperforms executive mandates. Amos argues that companies looking outward for AI solutions before understanding their internal bottlenecks are simply scaling chaos. The organizations that succeed start with process clarity, define what humans should do versus what should be automated, and then allow AI to execute within that structure. It is a powerful reminder that becoming AI-native has less to do with tools and more to do with operational self-awareness.

We also unpacked the difference between automation and agentic AI. Traditional automation follows deterministic steps coded in advance. Agentic AI shifts decision-making power to the model itself. The AI decides what to do next, introducing statistical reasoning rather than predefined logic. That shift in agency changes everything about how workflows operate and how leaders think about control.

Perhaps most fascinating is how Swan generates pipeline entirely through LinkedIn. No paid ads. No outbound. Amos has built an AI-driven engine that creates content, monitors engagement, qualifies prospects, and nurtures relationships at scale. It is an experiment in trust-based distribution powered by agents, not marketing budgets.

This conversation reframes what growth can look like in an AI-native world. If scaling no longer equals hiring, and if every employee becomes a manager of AI agents, what does leadership look like next? How do founders build organizations that amplify human zones of genius rather than bury them under coordination overhead?

If you are questioning long-held assumptions about team size, growth, and AI adoption, this episode will give you plenty to think about.

Todavía no hay opiniones