AI PCs Explained With Logan Lawler from Dell Technologies
No se pudo agregar al carrito
Add to Cart failed.
Error al Agregar a Lista de Deseos.
Error al eliminar de la lista de deseos.
Error al añadir a tu biblioteca
Error al seguir el podcast
Error al dejar de seguir el podcast
-
Narrado por:
-
De:
What actually happens when AI stops being a cloud-only experiment and starts running on desks, in labs, and inside real teams trying to ship real work?
In this episode, I sit down with Logan Lawler, Senior Director at Dell Technologies, to unpack how AI workloads are really being built and supported on the ground today. Logan leads Dell's Precision and Pro Max AI Solutions business and hosts Dell's own Reshaping Workflows podcast, giving him a rare vantage point into how engineers, developers, creatives, and data teams are actually working, not how marketing slides suggest they should be.
We start by cutting through the noise around AI PCs. At every conference stage, Logan breaks down what genuinely matters when choosing hardware for AI work. CPUs, GPUs, NPUs, memory, and software stacks all play different roles, and misunderstanding those roles often leads teams to overspend or underspec. Logan explains why all AI workstations qualify as AI PCs, but not all AI PCs are suitable for serious AI work, and why GPUs remain central for anyone doing real model development, fine-tuning, or inference at scale.
From there, the conversation shifts to a broader architectural rethink. As AI workloads grow heavier and data sensitivity increases, many organizations are reconsidering where compute should live. Logan shares how GPU-powered Dell workstations, storage-rich environments, and hybrid cloud setups are giving teams more control over performance, cost, and data. We explore why local compute is becoming attractive again, how modern GPUs now rival small server setups, and why hybrid workflows, local for development and cloud for deployment, are becoming the default rather than the exception.
One of the most compelling parts of the discussion comes when Logan connects hardware choices back to business reality. Drawing on real-world examples, he explains how teams use local AI environments to move faster, reduce cloud costs, and avoid getting locked into architectures that are hard to unwind later. This is not about abandoning the cloud, but about being intentional from the start, mainly as AI usage spreads beyond developers into marketing, operations, and everyday business roles.
We also step back to reflect on a deeper challenge. As AI becomes easier to use, what happens to critical thinking, curiosity, and learning? Logan shares a candid perspective, shaped by his experiences as a parent, technologist, and podcast host, raising questions about how tools should support rather than replace thinking.
If you are trying to make sense of AI PCs, local versus cloud compute, or how teams are really reshaping workflows with AI hardware today, this conversation offers grounded insight from someone living at the center of it. Are we designing systems that genuinely empower people to think better and build faster, or are we sleepwalking into decisions we will regret later? How do you want your own AI workflow to evolve?
Useful Links
- TLDR AI newsletter and the Neurons.
- The Reshaping Workflows podcast
- Connect with Logan Lawler
- Follow Dell Technologies on LinkedIn